Ecodesign Implementation and LCA

Chapter

Abstract

Ecodesign is a proactive product development approach that integrates environmental considerations into the early stages of the product development process so to improve the environmental performance of products. In this chapter, the ecodesign concept will be discussed, in terms of its implementation into manufacturing companies. Existing methods and tools for ecodesign implementation will be described, focusing on a multifaceted approach to environmental improvement through product development. Additionally, the use of LCA in an ecodesign implementation context will be further described in terms of the challenges and opportunities, together with the discussion of a selection of simplified LCA tools. Finally, a seven-step approach for ecodesign implementation which has been applied by several companies will be described.

References

  1. Alting, L., Hauschild, M., Wenzel, H.: Life Cycle Engineering and Management. In: Seliger, G. (ed.) Sustainability in Manufacturing: Recovery of Resources in Product and Material Cycles, pp. 31–67. Springer, Berlin (2007)Google Scholar
  2. Andreasen, M.M., Hein, L.: Integrated Product Development. Springer, Berlin (1987)Google Scholar
  3. Azapagic, A., Clift, R.: Life cycle assessment as a tool for improving process performance: a case study on boron products. Int. J. Life Cycle Assess. 4, 133–142 (1999)CrossRefGoogle Scholar
  4. Bakker, C.A., Wever, R., Teoh, C., De Clercq, S.: Designing cradle-to-cradle products: a reality check. Int. J. Sustain. Eng. 3, 2–8 (2010)CrossRefGoogle Scholar
  5. Baumann, H., Boons, F., Bragd, A.: Mapping the green product development field: engineering, policy and business perspectives. J. Clean. Prod. 10, 409–425 (2002). doi: 10.1016/S0959-6526(02)00015-X CrossRefGoogle Scholar
  6. Bey, N., Hauschild, M.Z., McAloone, T.C.: Drivers and barriers for implementation of environmental strategies in manufacturing companies. CIRP Ann. Manuf. Technol. 62, 43–46 (2013). doi: 10.1016/j.cirp.2013.03.001 CrossRefGoogle Scholar
  7. Bhamra, T., Lofthouse, V.: Design for Sustainability: A Practical Approach, 1st edn. Gower Publishing Limited, Hampshire (2007)Google Scholar
  8. Bhamra, T., Evans, S., McAloone T.: Integrating environmental decisions into the product development process. I. The early stages. In: EcoDesign’99: First 1–5 (1999)Google Scholar
  9. Bhander, G.S., Hauschild, M., McAloone, T.: Implementing life cycle assessment in product development. Environ. Prog. 22, 255–267 (2003). doi: 10.1002/ep.670220414 CrossRefGoogle Scholar
  10. Bjørn, A., Hauschild, M.Z.: Cradle to cradle and LCA—is there a conflict? In: Glocalized Solutions for Sustainability in Manufacturing—Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, pp. 599–604 (2011)Google Scholar
  11. Boks, C., Diehl, J.C.: EcoBenchmarking for all. In: 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005. EcoDesign’05, pp. 792–798 (2005)Google Scholar
  12. Boks, C., Stevels, A.: Theory and practice of environmental benchmarking in a major consumer electronics company. Benchmarking Int. J. 10, 120–135 (2003)CrossRefGoogle Scholar
  13. Bovea, M.D., Perez-Belis, V.: A taxonomy of ecodesign tools for integrating environmental requirements into the product design process. J. Clean. Prod. 20, 61–71 (2012). doi: 10.1016/j.jclepro.2011.07.012 CrossRefGoogle Scholar
  14. Brezet, H., Stevels, A., Rombouts, J.: LCA for EcoDesign: the Dutch experience. Ab Stevels design for sustainability program, Delft University of Technology. In: First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign’99, pp. 36–40 (1999)Google Scholar
  15. Brones, F., de Carvalho, M.M.: From 50 to 1: integrating literature toward a systemic ecodesign model. J. Clean. Prod. 96, 44–57 (2015). doi: 10.1016/j.jclepro.2014.07.036 CrossRefGoogle Scholar
  16. Byggeth, S., Hochschorner, E.: Handling trade-offs in Ecodesign tools for sustainable product development and procurement. J. Clean. Prod. 14, 1420–1430 (2006). doi: 10.1016/j.jclepro.2005.03.024 CrossRefGoogle Scholar
  17. Cappelli, F., Delogu, M.: Integration of LCA and EcoDesign guideline in a virtual CAD framework. In: Proceedings of Life Cycle Engineering, pp. 185–188 (2006)Google Scholar
  18. Chang, D., Lee, C.K.M., Chen, C.-H.: Review of life cycle assessment towards sustainable product development. J. Clean. Prod. 83, 48–60 (2014)CrossRefGoogle Scholar
  19. Cluzel, F., Yannou, B., Leroy, Y., Millet, D.: Proposition for an adapted management process to evolve from an unsupervised life cycle assessment of complex industrial systems towards an eco-designing organisation. Concurr. Eng. 20, 111–126 (2012). doi: 10.1177/1063293X12446663 CrossRefGoogle Scholar
  20. Communities C of the E: Green paper on integrated product policy. Office for Official Publications of the European Communities, Brussels (2001)Google Scholar
  21. Cramer, J., Stevels, A.: Strategic environmental product planning within Philips sound & vision. Environ. Qual. Manag. 7, 91–102 (1997)CrossRefGoogle Scholar
  22. de Caluwe, N.: Business benefits from applied EcoDesign. IEEE Trans. Electron. Packag. Manuf. 27, 215–220 (2004). doi: 10.1109/AGEC.2004.1290904 CrossRefGoogle Scholar
  23. Diehl, J.C.: Ecodesign knowledge transfer: how to take the economical and cultural context of the receiver into consideration. In: Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005. Eco Design 2005, pp. 86–92. IEEE (2005)Google Scholar
  24. Donnelly, K., Beckett-furnell, Z., Traeger, S., et al.: Eco-design implemented through a product-based environmental management system. J. Clean. Prod. 14, 1357–1367 (2006a). doi: 10.1016/j.jclepro.2005.11.029 CrossRefGoogle Scholar
  25. Donnelly, K., Olds, R., Blechinger, F., et al.: ISO 14001—effective management of sustainable design. J. Sustain. Prod. Des. 4, 43–54 (2006b). doi: 10.1007/s10970-006-0004-9 CrossRefGoogle Scholar
  26. Eagan, P., Finster, M.: Creating Business Value by Linking Industrial Ecology with Business Strategy and Product Design (IEEE Keynote) (2001). doi: 10.1109/ECODIM.2001.992478
  27. Ernzer, M., Oberender, C., Birkhofer, H.: Methods to support EcoDesign in the product development process. In: 3rd International Congress of Design Research, Rio de Janeiro, p. 13 (2005)Google Scholar
  28. Ferrendier, S., Mathieux, F., Rebitzer, G., et al.: Eco-design Guide: Environmentally Improved Product Design Case Studies of the European Electrical and Electronics Industry, ECOLIFE Thematic Network, pp. 21–34. (2002) Google Scholar
  29. Field, F., Isaacs, J.A., Clark, J.P.: Life cycle design and its role in product and process development. Int. J. Environ. Conscious Des. Manuf. 2(2), 13–20 (1993)Google Scholar
  30. Fiksel, J., Mcdaniel, J., Spitzley, D.: Measuring product sustainability. J. Sustain. Prod. Des. 6, 7–18 (1998) Google Scholar
  31. Gheorghe, R., Ishii, K.: Eco-design value alignment-keys to success. In: ASME 2007 International Mechanical Engineering Congress and Exposition (IMECE2007), pp. 267–277 (2007)Google Scholar
  32. Hauschild, M.Z.: Better—but is it good enough? On the need to consider both eco-efficiency and eco-effectiveness to gauge industrial sustainability. Proc. CIRP 29, 1–7 (2015)CrossRefGoogle Scholar
  33. Heijungs, R., Huppes, G., Guinée, J.B.: Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym. Degrad. Stab. 95, 422–428 (2010). doi: 10.1016/j.polymdegradstab.2009.11.010 CrossRefGoogle Scholar
  34. Herva, M., Franco, A., Carrasco, E.F., Roca, E.: Review of corporate environmental indicators. J. Clean. Prod. 19, 1687–1699 (2011). doi: 10.1016/j.jclepro.2011.05.019 CrossRefGoogle Scholar
  35. Herva, M., Franco-Uria, A., Carrasco, E.F., Roc, E.: Application of fuzzy logic for the integration of environmental criteria in ecodesign. Expert Syst. Appl. 39, 4427–4431 (2012). doi: 10.1016/j.eswa.2011.09.148 CrossRefGoogle Scholar
  36. Hesselbach, J., Herrmann, C.: Knowledge management as a support of an efficient Ecodesign. In: EcoDesign’03 2003 3rd edn., pp. 1–4 (2003)Google Scholar
  37. Hochschorner, E., Finnveden, G.: Evaluation of two simplified life cycle assessment methods. Int. J. Life Cycle Assess. 8, 119–128 (2003)CrossRefGoogle Scholar
  38. Hunkeler, D., Vanakari, E.: EcoDesign and LCA: Survey of current uses of environmental attributes in product and process development. Int. J. Life Cycle Assess. 5, 145–151 (2000)CrossRefGoogle Scholar
  39. Hur, T., Lee, J., Ryu, J., Kwon, E.: Simplified LCA and matrix methods in identifying the environmental aspects of a product system. J. Environ. Manag. 75, 229–237 (2005). doi: 10.1016/j.jenvman.2004.11.014 CrossRefGoogle Scholar
  40. ISO: Environmental Management—Life Cycle Assessment—Principles and Framework (ISO 14040). ISO, The International Organization for Standardization, Geneva (2006a)Google Scholar
  41. ISO: Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO 14044). ISO, The International Organization for Standardization, Geneva (2006b)Google Scholar
  42. Issa, I.I., Pigosso, D.C.A., Mcaloone, T.C., Rozenfeld, H.: Product-related environmental performance indicators : a systematic literature review. In: Ecodesign 2013, Jeju, South Korea (2013)Google Scholar
  43. Issa, I.I., Pigosso, D.C.A., McAloone, T.C., Rozenfeld, H.: Leading product-related environmental performance indicators: a selection guide and database. J. Clean. Prod. 108, 321–330 (2015). doi: 10.1016/j.jclepro.2015.06.088 CrossRefGoogle Scholar
  44. Jeswiet, J., Hauschild, M.: EcoDesign and future environmental impacts. Mater. Des. 26, 629–634 (2005). doi: 10.1016/j.matdes.2004.08.016 CrossRefGoogle Scholar
  45. Johansson, G.: Success factors for integration of ecodesign in product development: a review of state of the art. Environ. Manag. Health 13, 98–107 (2002). doi: 10.1108/09566160210417868 CrossRefGoogle Scholar
  46. Jones, E., Stanton, N.A., Harisson, D.: Applying structured methods to eco-innovation. An evaluation of the Product Ideas Tree diagram. Des. Stud. 22, 519–542 (2001). doi: 10.1016/S0142-694X(01)00007-2 CrossRefGoogle Scholar
  47. Kassahun, B., Saminathan, M., Sekutowski, J.C.: Green design tool. In: Proceedings of the 1995 IEEE International Symposium on Electronics and the Environment ISEE (Cat. No. 95CH35718), pp. 118–125. IEEE (1995)Google Scholar
  48. Kengo, K., Rei, S., Kenji, Y., Satoko, W.: Eco-value as an indicator for sustainable design. In: Proceedings Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 1106–1109 (2001). doi: 10.1109/ECODIM.2001.992532
  49. Kengpol, A., Boonkanit, P.: The decision support framework for developing Ecodesign at conceptual phase based upon ISO/TR 14062. Int. J. Prod. Econ. 131, 4–14 (2011). doi: 10.1016/j.ijpe.2010.10.006 CrossRefGoogle Scholar
  50. Keoleian, G., Glantschnig, W.J., McCann, W:. Life cycle design: AT&T demonstration project. In: Proceedings of the International Symposium on Electronics and the Environment, San Francisco, USA (1994)Google Scholar
  51. Knight, P., Jenkins, J.: Adopting and applying eco-design techniques: a practitioners perspective. J. Clean. Prod. 17, 549–558 (2009). doi: 10.1016/j.jclepro.2008.10.002 CrossRefGoogle Scholar
  52. Lagerstedt, J., Luttropp, C., Lindfors, L.-G.: Functional priorities in LCA and design for environment. Int. J. Life Cycle Assess. 8, 160–166 (2003)CrossRefGoogle Scholar
  53. Lindahl, M.: E-FMEA—a new promising tool for efficient design for environment. In: Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, pp 734–740 (1999)Google Scholar
  54. Lindahl, M.: Environmental Effect Analysis (EEA)—An Approach to Design for Environment, Licentiate Thesis in Industrial Ecology, Department of Chemical Engineering and Technology, Royal Institute of Technology, Stockholm, Sweden, ISBN 9 1-973906-2-3 (2000)Google Scholar
  55. Lindahl, M., Sundin, E., Sakao, T.: Environmental and economic benefits of Integrated Product Service Offerings quantified with real business cases. J. Clean. Prod. 64, 288–296 (2014). doi: 10.1016/j.jclepro.2013.07.047 CrossRefGoogle Scholar
  56. Luttropp, C., Lagerstedt, J.: EcoDesign and the ten golden rules: generic advice for merging environmental aspects into product development. J. Clean. Prod. 14, 1396–1408 (2006). doi: 10.1016/j.jclepro.2005.11.022 CrossRefGoogle Scholar
  57. Mcaloone, T.C., Bey, N.: Environmental improvement through product development—a guide, 1st edn. Denmark, Copenhagen (2011)Google Scholar
  58. McDonough, W., Braungart, M.: Cradle to Cradle: Remaking the Way We Make Things. Macmillan, New York (2010)Google Scholar
  59. Miettinen, P., Hämäläinen, R.P.: How to benefit from decision analysis in environmental life cycle assessment (LCA). Eur. J. Oper. Res. 102, 279–294 (1997)CrossRefMATHGoogle Scholar
  60. Munoz, I., Rieradevall, J., Domenech, X., Gazulla, C.: Using LCA to assess eco-design in the automotive sector—Case study of a polyolefinic door panel. Int. J. Life Cycle Assess. 11, 323–334 (2006). doi: 10.1065/lca.2005.05.207 CrossRefGoogle Scholar
  61. Nielsen, P.H., Wenzel, H.: Integration of environmental aspects in product development: a stepwise procedure based on quantitative life cycle assessment. J. Clean. Prod. 10, 247–257 (2002)CrossRefGoogle Scholar
  62. Ny, H., MacDonald, J.P., Broman, G., et al.: Sustainability constraints as system boundaries—an approach to making life-cycle management strategic. J. Ind. Ecol. 10, 61–77 (2006). doi: 10.1162/108819806775545349 CrossRefGoogle Scholar
  63. Pascual, O., Stevels, A.: Ecodesign operationalization and company performance in electronics industry. In: Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005. Eco Design 2005, pp. 807–813 (2005)Google Scholar
  64. Pascual, O.A., Stevels, A.: Maximizing profitability with ecovalue. In: Proceedings of Eco Design 2006 Asia Pacific Symposium. NPO EcoDesign Promotion, Network, Tokyo (2006)Google Scholar
  65. Pigosso, D.A., Grandi, C., Rozenfeld, H.: Strategic implementation of design for environment at Embraer. In: 8th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Jeju, South Korea, pp. 2–5 (2013a)Google Scholar
  66. Pigosso, D.C.A., McAloone, T.C., Rozenfeld, H.: Systematization of best practices for ecodesign implementation. In: International Design Conference—DESIGN 2014, Dubrovnik, Croatia, pp. 1651–1662 (2014)Google Scholar
  67. Pigosso, D.C.A., Rozenfeld, H., Seligerl, G.: EcoDesign Maturity Model: criteria for methods and tools classification. In: Seliger, G., Khraisheh, M.M.K., Jawahir, I.S. (eds.) Advances in Sustainable Manufacturing, 1st edn., pp. 239–243. Springer, Berlin (2011a) Google Scholar
  68. Pigosso, D.C.A., Souza, S.R., Ometto, A.R., Rozenfeld, H.: Life Cycle Assessment (LCA): discussion on full-scale and simplified assessments to support the product development process. In: 3rd International Workshop—Advances in Cleaner Production, São Paulo (2011b)Google Scholar
  69. Pigosso, D.C.A., Rozenfeld, H., McAloone, T.C.: Ecodesign maturity model: a management framework to support ecodesign implementation into manufacturing companies. J. Clean. Prod. 59, 160–173 (2013). doi: 10.1016/j.jclepro.2013.06.040 CrossRefGoogle Scholar
  70. Poole, S., Simon, M., Sweatman, A, et al.: Integrating environmental decisions into the product development process: part 2 the later stages. In: Proceedings. EcoDesign’99: First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 1999, pp. 334–337. IEEE (1999)Google Scholar
  71. Portney, P.R.: The price is right making use of life cycle analysis. Issues Sci. Technol. 10(2), 69–75 (1993)Google Scholar
  72. Poudelet, V., Chayer, J.-A., Margni, M., et al.: A process-based approach to operationalize life cycle assessment through the development of an eco-design decision-support system. J. Clean. Prod. 33, 192–201 (2012). doi: 10.1016/j.jclepro.2012.04.005 CrossRefGoogle Scholar
  73. Reay, S.D., Mccool, J.P., Withell, A.: Exploring the feasibility of cradle to cradle (product) design: perspectives from New Zealand scientists. J. Sustain. Dev. 4, 36–44 (2011)Google Scholar
  74. Rio, M., Reyes, T., Roucoules, L.: Toward proactive (eco)design process: modeling information transformations among designers activities. J. Clean. Prod. 39, 105–116 (2013). doi: 10.1016/j.jclepro.2012.07.061 CrossRefGoogle Scholar
  75. Rossi, M., Charon, S., Wing, G., Ewell, J.: Design for the next generation incorporating cradle-to-cradle design into Herman Miller products. J. Ind. Ecol. 10, 193–210 (2006). doi: 10.1162/jiec.2006.10.4.193 CrossRefGoogle Scholar
  76. Russo, D., Rizzi, C., Montelisciani, G.: Inventive guidelines for a TRIZ-based eco-design matrix. J. Clean. Prod. 76, 95–105 (2014). doi: 10.1016/j.jclepro.2014.04.057 CrossRefGoogle Scholar
  77. Simon, M., Poole, S., Sweatman, A., et al.: Environmental priorities in strategic product development. Bus. Strategy Environ. 9(6), 367–377 (2000)CrossRefGoogle Scholar
  78. Stevels, A.: Adventures in ecodesign of electronic products (1993–2007). Ipskamp, Enschede (2007)Google Scholar
  79. Stevels, A.: Application of EcoDesign: ten years of dynamic development. In: Proceedings of the Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pp. 905–915 (2001)Google Scholar
  80. Sun, J., Han, B., Ekwaro-Osire, S., Zhang, H.-C.: Design for environment: methodologies, tools, and implementation. J. Integr. Des. Process. Sci. Manuf. Des. 7, 59–75 (2003)Google Scholar
  81. Tchertchian, N., Yvars, P.-A., Millet, D.: Benefits and limits of a constraint satisfaction problem/life cycle assessment approach for the ecodesign of complex systems: a case applied to a hybrid passenger ferry. J. Clean. Prod. 42, 1–18 (2013). doi: 10.1016/j.jclepro.2012.10.048 CrossRefGoogle Scholar
  82. Tingström, J., Karlsson, R.: The relationship between environmental analyses and the dialogue process in product development. J. Clean. Prod. 14, 1409–1419 (2006). doi: 10.1016/j.jclepro.2005.11.012 CrossRefGoogle Scholar
  83. Trappey, A.J.C., Ou, J.J.R., Lin, G.Y.P., Chen, M.-Y.: An eco- and inno-product design system applying integrated and intelligent qfde and triz methodology. J. Syst. Sci. Syst. Eng. 20, 443–459 (2011). doi: 10.1007/s11518-011-5176-8 CrossRefGoogle Scholar
  84. van Weenen, J.: Towards sustainable product development. J. Clean. Prod. 3, 95–100 (1995)CrossRefGoogle Scholar
  85. Vezzoli, C., Manzini, E.: Design for Environmental Sustainability, 1st edn. Springer, London (2008)Google Scholar
  86. Wenzel, H., Hauschild, M., Alting, L.: Environmental Assessment of Products. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  87. Wever, R., Boks, C., van Es, H., Stevels, A.: Multiple environmental benchmarking data analysis and its implications for design: a case study on packaging. In: Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005. Eco Design 2005, pp. 799–806 (2005)Google Scholar
  88. Wever, R., Boks, C., Marinelli, T., Stevels, A.: Increasing the benefits of product-level benchmarking for strategic eco-efficient decision making. Benchmarking Int. J. 14, 711–727 (2007). doi: 10.1108/14635770710834509 CrossRefGoogle Scholar
  89. Wimmer, W., Pamminger, R., Stachura, M., Grab, R.: ECODESIGN in the electronics industry—achieving legal compliance with the EU-directives and environmentally improving products by using the new EEE-PILOT. In: Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005. Eco Design 2005, pp. 671–677 (2005)Google Scholar
  90. Wimmer, W.: The ECODESIGN Checklist Method : A Redesign Tool for Environmental Product Improvements. In: First International Symposium On Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign’99, pp. 685–688 (1999)Google Scholar
  91. Zackrisson, M., Rocha, C., Christiansen, K., Jarnehammar, A.: Stepwise environmental product declarations: ten SME case studies. J. Clean. Prod. 16, 1872–1886 (2008). doi: 10.1016/j.jclepro.2008.01.001 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Section of Engineering Design and Product Development, Department of Mechanical EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations