Advertisement

License to Explore: How Images Work in Simulation Modeling

  • Johannes LenhardEmail author
Chapter
Part of the Philosophy of Engineering and Technology book series (POET, volume 28)

Abstract

This contribution investigates the functions that visualizations fulfill in simulation modeling. The essential point is that visualization supports interaction between modeler and model during the iterative process of model building and adaptation. I argue for a differential perspective, meaning it is the differences between images that play a major role in this process. These differences are pivotal for comparing variants of a model according to their relative performances. This highlights the function not of single images, but of series of them. A couple of illustrative examples cover imagery used in particle physics, computational fluid dynamics engineering, and nanoscale tribology. The discussion shows how image-based simulation methods gear the sciences toward a mode that is well-known from engineering. In epistemic respects, this mode is oriented at a type of knowledge tailor-made for interventions and design. The explanatory capacity, on the other side, seems to be less favored.

Keywords

Explanation Exploration Design Visualization Simulation modeling 

References

  1. Bachelard, G. (2001). Formation of the scientific mind: A contribution to a psychoanalysis of objective knowledge. Manchester: Clinamen.Google Scholar
  2. Bader, L., Geier, M., & Wolf, F. (Eds.). (2010). Vergleichendes Sehen. München: Wilhelm Fink.Google Scholar
  3. Baird, D., Nordmann, D., & Schummer, J. (Eds.). (2004). Discovering the Nanoscale. Amsterdam: IOS Press.Google Scholar
  4. Cartwright, N. (1983). How the laws of physics lie. Oxford/New York: Oxford University Press.CrossRefGoogle Scholar
  5. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.Google Scholar
  6. Eigler, D. M., & Schweizer, E. K. (1990). Positioning single atoms with a scanning tunneling microscope. Nature, 344, 524–526.CrossRefGoogle Scholar
  7. Feynman, R. P. (1960). There is plenty of room at the bottom. Caltech Engineering and Science, 23(5), 22–36.Google Scholar
  8. Gao, J., Luedtke, W. D., & Landman, U. (1998). Friction control in thin film lubrication. Journal of Physical Chemistry B, 102, 5033–5037.CrossRefGoogle Scholar
  9. Gross, A., & Louson, E. (Eds.). (2012). Visual representation and science. Spontaneous Generations, 6(1). http://spontaneousgenerations.library.utoronto.ca/index.php/SpontaneousGenerations. Accessed 4 June 2013.
  10. Heintz, B., & Huber, J. (Eds.). (2001). Mit dem Auge denken: Strategien der Sichtbarmachung in wissenschaftlichen und virtuellen Welten. ViennaWien/New York: Springer.Google Scholar
  11. Hennig, J. (2006). Die Versinnlichung des Unzugänglichen: Oberflächendarstellungen in der zeitgenössischen Mikroskopie. In M. Heßler (Ed.), Konstruierte Sichtbarkeiten: Wissenschafts- und Technikbilder seit der Frühen Neuzeit (pp. 99–116). Munich: Fink.Google Scholar
  12. Heßler, M. (Ed.). (2006). Konstruierte Sichtbarkeiten: Wissenschafts- und Technikbilder seit der Frühen Neuzeit. Munich: Fink.Google Scholar
  13. Johnson, A., & Lenhard, J. (2011). Toward a new culture of prediction: Computational modeling in the era of desktop computing. In A. Nordmann, H. Radder, & G. Schiemann (Eds.), Science transformed? Debating claims of an Epochal break (pp. 189–199). Pittsburgh: University of Pittsburgh Press.Google Scholar
  14. Kant, I. (1998). Critique of Pure Reason (P. Guyer, & A. W. Wood, Translated/edited). Cambridge: Cambridge University Press.Google Scholar
  15. Landman, U. (2001). Lubricating nanoscale machines: Unusual behavior of highly confined fluids challenges conventional expectations. Georgia Tech Research News. http://gtresearchnews.gatech.edu/newsrelease/landman/landman_news.htm. Accessed 5 Aug 2008.Google Scholar
  16. Lenhard, J. (2006). Surprised by a nanowire: Simulation, control, and understanding. Philosophy of Science (PSA 2004), 73(5), 605–616.Google Scholar
  17. Mandelbrot, B. (1983). Fractal geometry of nature. San Francisco: Freeman.Google Scholar
  18. Marcovich, A., & Shinn, T. (2014). Toward a new dimension: Exploring the nanoscale. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Mody, C. (2011). Instrumental community: Probe microscopy and the path to nanotechnology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  20. Murphey, M. G. (1961). The development of Charles Sanders Peirce’s philosophy. Cambridge, MA: Harvard University Press.Google Scholar
  21. Napoletani, D., Panza, M., & Struppa, D. (2011). Agnostic science: Towards a philosophy of data analysis. Foundations of Science, 16(1), 1–20.CrossRefGoogle Scholar
  22. Peitgen, H., Jürgens, H., & Saupe, D. (1992/2004). Chaos and Fractals: New Frontiers of science. New York: Springer.CrossRefGoogle Scholar
  23. Simscale (2015a). http://www.simscale.de. Accessed 16 May 2015.
  24. Simscale (2015b). https://simscale.com/_en/?page=stories/inlet-duct. Accessed 16 May 2015.
  25. Spencer, M. (2012). Trouble with images in computational physics. Spontaneous Generations, 6(1), 34–42.Google Scholar
  26. Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Philosophy and Institute for Interdisciplinary Studies of ScienceBielefeld UniversityBielefeldGermany

Personalised recommendations