Electromagnetic Modes Inside the Island Kind 2D Photonic Crystal Resonator

  • E. Ya. Glushko
  • A. N. Stepanyuk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 195)


A binary island kind photonic crystal resonator is investigated analytically and numerically in the framework of standing wave expansion method. The photonic energy distribution and bandgap structure for the finite SiO2/SiO2 resonator with rectangular elementary cell of micron sizes are first calculated. The classification concept of resonator’s modes is proposed. It is concluded that depending on the structure three types of local states of electromagnetic field exist inside the resonator besides the transmitted standing waves: intrinsic, surface and edge states. The field distribution inside the resonator is calculated, and ways of use the island resonators in optical devices are discussed.


  1. 1.
    Glushko EY, Glushko OE, Karachevtseva LA (2012) Photonic Eigenmodes in a photonic crystal membrane. ISRN Optics 2012:Article ID 373968:6p. doi: 10.5402/2012/373968
  2. 2.
    Yablonovich E (1987) Inhibited spontaneous emission in solid state physics and electronics. Phys Rev Let 58:2059ADSCrossRefGoogle Scholar
  3. 3.
    John S, Joannopoulos D, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, PrincetonMATHGoogle Scholar
  4. 4.
    Sakoda K (2001) Optical properties of photonic crystals. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Winn NY, Fink S, Fan Y, Joannopoulos JD (1998) Omnidirectional reflection from a one-dimensional photonic crystal. Opt Lett 23:1573–1575ADSCrossRefGoogle Scholar
  6. 6.
    Deopura M, Ullal CK, Temelkuran B, Fink Y (2001) Dielectric omnidirectional visible reflector. Opt Lett 26:1197–1199ADSCrossRefGoogle Scholar
  7. 7.
    Loncar M, Doll T, Vuchkovich J, Scherer A (2000) Design and fabrication of silicon photonic crystal optical waveguides. J Lightwave Technol 18:1402–1411ADSCrossRefGoogle Scholar
  8. 8.
    Jamois C, Wehrspohn RB, Andreani LC, Hermann C, Hess O, Gosele U (2003) Silicon-based two-dimensional photonic crystal waveguides. Photonics Nanostruct Fundam Appl 1:1–13ADSCrossRefGoogle Scholar
  9. 9.
    Glushko EY, Glushko AE, Karachevtseva LA (2010) Photonic membranes and photonic crystal resonators for all-optical signal processing. Proc SPIE 7713:77131DADSGoogle Scholar
  10. 10.
    Glushko EY (2014) Influence of oxidation on the spectrum of a ternary comb-like silicon photonic crystal: intrinsic modes, reflection windows and intrinsic contrastivity. Eur Phys J D 68:264ADSCrossRefGoogle Scholar
  11. 11.
    Glushko EY, Glushko AE, Evteev VN, Stepanyuk AN (2008) Electromagnetic eigenwaves in metastructures: perturbation theory method. Proc. SPIE. 6888:69880J–69880J-11Google Scholar
  12. 12.
    Courant R, Hilbert D (1953) Methods of mathematical Physics, vol 1. Interscience, New YorkMATHGoogle Scholar
  13. 13.
    Gladwell GML, Zhu H (2002) Courant’s nodal line theorem and its discrete counterparts. Q J Mech Appl Math 55(1):1–15MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Orfanidis SJ Electromagnetic waves and antennas, Chapter 9. Online book: Scholar
  15. 15.
    Oron R, Davidson N, Friesem AA (2001) Transverse mode shaping and selection in laser resonators. In: Wolf E (ed) Progress in optics 42. Elsevier Science, BurlingtonGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Semiconductor Physics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Kryvyi Rih State Pedagogical UniversityKryvyi RihUkraine

Personalised recommendations