Skip to main content

Computer Simulation of Collision-Induced Absorption Spectra of Confined Argon-Xenon Mixture

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

  • 1320 Accesses

Abstract

The collision-induced absorption spectra of interacting argon and xenon atoms placed between graphite slabs have been calculated using molecular dynamics (MD) simulations. The coupled cluster (CC) quantum mechanical method has been used to obtain the parameters of continuous phenomenological model of collision-induced dipole moments. The collision-induced dipole moment correlation functions of Ar-Xe at three temperatures have been calculated. The two-, three-, and four-body contributions to the correlation function have been also calculated and analyzed. The dynamics of argon and xenon atoms between graphite slabs have been investigated by the mean square displacement functions and z-profile functions. We have found that collision-induced absorption spectra reflect the mobility of noble gas atoms in binary mixture between graphite slabs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weir G, Muneer T (1998) Energy and environmental impact analysis of double-glazed windows. Energy Convers Manag 39:243–256. doi:10.1016/S0196-8904(96)00191-4

    Article  Google Scholar 

  2. Clarke JA, Janak M, Ruyssevelt P (1998) Assessing the overall performance of advanced glazing systems. Sol Energy 63:231–241. doi:10.1016/S0038-092X(98)00034-6

    Article  ADS  Google Scholar 

  3. Huang B, Li Z, Liu Z et al (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for Nanoscale molecule sensor. J Phys Chem C 112:13442–13446. doi:10.1021/jp8021024

    Article  Google Scholar 

  4. Guillot B (1989) Triplet dipoles in the absorption spectra of dense rare gas fluids. II. Long range interactions. J Chem Phys 91:3456–3462. doi:10.1063/1.456874

    Article  ADS  Google Scholar 

  5. Gburski Z (1985) Convergence of memory functions for the vibrational dephasing process in liquids. Chem Phys Lett 115:236–240. doi:10.1016/0009-2614(85)80687-4

    Article  ADS  Google Scholar 

  6. Krauss M, Regan RM, Konowalow DD (1988) Rare-gas interaction energy curves. J Phys Chem 92:4329–4333. doi:10.1021/j100326a018

    Article  Google Scholar 

  7. Gburski Z, Zerda T (1980) Vibrational dephasing and intermolecular interactions in liquids. Acta Phys Pol Ser A 57:447–454

    Google Scholar 

  8. Gburski Z, Gray CG, Sullivan DE (1984) Lineshape in collision-induced absorption. Mori Theory Chem Phys Lett 106:55–59. doi:10.1016/0009-2614(84)87010-4

    Article  ADS  Google Scholar 

  9. Guillot B (1987) Theoretical investigation of the dip in the far infrared absorption spectrum of dense rare gas mixtures. J Chem Phys 87:1952–1961. doi:10.1063/1.453167

    Article  ADS  Google Scholar 

  10. Dawid A, Gburski Z (1998) Interaction-induced absorption in argon-krypton mixture clusters: molecular-dynamics study. Phys Rev A 58:740–743. doi:10.1103/PhysRevA.58.740

    Article  ADS  Google Scholar 

  11. Dawid A, Gburski Z (1997) Interaction-induced light scattering in Lennard-Jones argon clusters: computer simulations. Phys Rev A 56:3294–3296. doi:10.1103/PhysRevA.56.3294

    Article  ADS  Google Scholar 

  12. Dawid A, Gburski Z (1999) Interaction-induced light scattering in xenon clusters: molecular dynamics study. J Mol Struct 482–483:271–276. doi:10.1016/S0022-2860(98)00668-1

    Article  Google Scholar 

  13. Dawid A, Gburski Z (2002) Interaction-induced absorption in liquid argon–xenon mixture cluster: MD simulation. J Mol Struct 614:177–182. doi:10.1016/S0022-2860(02)00243-0

    Article  ADS  Google Scholar 

  14. Piatek A, Dawid A, Gburski Z (2006) The existence of a plastic phase and a solid–liquid dynamical bistability region in small fullerene cluster (C60)7: molecular dynamics simulation. J Phys Condens Matter 18:8471. doi:10.1088/0953-8984/18/37/006

    Article  ADS  Google Scholar 

  15. Dawid A, Gburski Z (1997) Dynamical properties of the argon-krypton clusters: molecular dynamics calculations. J Mol Struct 410–411:507–511. doi:10.1016/S0022-2860(96)09512-9

    Google Scholar 

  16. Piatek A, Dawid A, Gburski Z (2011) The properties of small fullerenol cluster (C-60(OH)(24))(7): computer simulation. Spectrochim Acta Part Mol Biomol Spectrosc 79:819–823. doi:10.1016/j.saa.2010.08.059

    Article  ADS  Google Scholar 

  17. Raczyński P, Dawid A, Gburski Z (2005) Depolarized light scattering in small fullerene clusters—computer simulation. J Mol Struct 744–747:525–528. doi:10.1016/j.molstruc.2004.12.064

    Article  Google Scholar 

  18. Abdel Kader MS (2008) Collision-induced light scattering spectra and ground state potential of gaseous xenon. Chem Phys 352:311–319. doi:10.1016/j.chemphys.2008.07.004

    Article  ADS  Google Scholar 

  19. Dawid A, Dendzik Z, Gburski Z (2004) Molecular dynamics study of ultrathin argon layer covering fullerene molecule. J Mol Struct 704:173–176. doi:10.1016/j.molstruc.2004.01.065

    Article  ADS  Google Scholar 

  20. Kachel A, Gburski Z (1997) Chain formation in a model dipolar liquid: computer simulation study. J Phys-Condens Mat 9:10095–10100. doi:10.1088/0953-8984/9/46/007

    Article  ADS  Google Scholar 

  21. Dawid A, Gburski Z (2003) Rayleigh light scattering in fullerene covered by a spherical argon film – a molecular dynamics study. J Phys Condens Matter 15:2399–2405. doi:10.1088/0953-8984/15/14/315

    Article  ADS  Google Scholar 

  22. Gruszka M, Gburski Z (1992) Interaction-induced light scattering in atomic fluids — a two-body contribution studied by MD simulations. J Mol Struct 275:129–133. doi:10.1016/0022-2860(92)80188-N

    Article  ADS  Google Scholar 

  23. Dawid A, Gburski Z (2003) Interaction-induced light scattering in a fullerene surrounded by an ultrathin argon “atmosphere”: molecular dynamics simulation. Phys Rev A 68:065202. doi:10.1103/PhysRevA.68.065202

    Article  ADS  Google Scholar 

  24. Skrzypek M, Gburski Z (2002) Fullerene cluster between graphite walls – computer simulation. Europhys Lett 59:305–310. doi:10.1209/epl/i2002-00242-8

    Article  ADS  Google Scholar 

  25. Dawid A, Gburski Z (2007) Dielectric relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin layer adsorbed on carbon nanotube – MD simulation. J Non-Cryst Solids 353:4339–4343. doi:10.1016/j.jnoncrysol.2007.02.072

    Article  ADS  Google Scholar 

  26. Dendzik Z, Kosmider M, Dawid A, Gburski Z (2005) Interaction induced depolarized light scattering from ultrathin ne film covering single-walled carbon nanotubes of different chiralities. J Mol Struct 744:577–580. doi:10.1016/j.molstruc.2004.12.049

    Article  ADS  Google Scholar 

  27. Kośmider M, Dendzik Z, Pałucha S, Gburski Z (2004) Computer simulation of argon cluster inside a single-walled carbon nanotube. J Mol Struct 704:197–201. doi:10.1016/j.molstruc.2004.02.050

    Article  ADS  Google Scholar 

  28. Dendzik Z, Kośmider M, Dawid A et al (2005) Interaction-induced depolarized light scattering spectra of exohedral complexes of Ne and Ar with fullerenes and nanotubes. Mater Sci-Pol 23:457–466

    Google Scholar 

  29. Dawid A, Raczynski P, Gburski Z (2014) Depolarised Rayleigh light scattering in argon layer confined between graphite plains: MD simulation. Mol Phys 112:1645–1650. doi:10.1080/00268976.2013.853111

    Article  ADS  Google Scholar 

  30. Dawid A, Wojcieszyk D, Gburski Z (2016) Collision-induced light scattering spectra of krypton layer confined between graphite slabs – MD simulation. J Mol Struct 1126:103–109. doi:10.1016/j.molstruc.2016.01.063

    Article  ADS  Google Scholar 

  31. Dawid A, Gorny K, Wojcieszyk D et al (2014) Collision-induced light scattering in a thin xenon layer between graphite slabs – MD study. Spectrochim Acta Part Mol Biomol Spectrosc 129:594–600. doi:10.1016/j.saa.2014.03.101

    Article  ADS  Google Scholar 

  32. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    MATH  Google Scholar 

  33. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  34. Dawid A (2012) RIGid Molecular Dynamics (RIGMD) – simulation software. In: http://prac.us.edu.pl/~dawid/RIGMD/rigmdUS.php. http://prac.us.edu.pl/~dawid/RIGMD/rigmdUS.php

  35. Mountain RD, Birnbaum G (1987) Molecular dynamics study of intercollisional interference in collision-induced absorption in compressed fluids. J Chem Soc Faraday Trans 2 83:1791. doi:10.1039/f29878301791

    Article  Google Scholar 

  36. Birnbaum G, Krauss M, Frommhold L (1984) Collision-induced dipoles of rare gas mixtures. J Chem Phys 80:2669–2674. doi:10.1063/1.447062

    Article  ADS  Google Scholar 

  37. Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Efficient computer implementation of the renormalized coupled-cluster methods: the R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Comput Phys Commun 149:71–96. doi:10.1016/S0010-4655(02)00598-2

    Article  ADS  Google Scholar 

  38. Gordon MS, Schmidt MW (2005) Chapter 41 – Advances in electronic structure theory: GAMESS a decade later A2 – Dykstra, Clifford E. In: Frenking G, Kim KS, Scuseria GE (eds) Theory application computational chemistry. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was supported in part by PL-Grid Infrastructure (grant IDs: molinter2015 and fulinter2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Gburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dawid, A., Gburski, Z. (2017). Computer Simulation of Collision-Induced Absorption Spectra of Confined Argon-Xenon Mixture. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_17

Download citation

Publish with us

Policies and ethics