Advertisement

The Multiscale Line Segment Detector

  • Yohann Salaün
  • Renaud Marlet
  • Pascal Monasse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10214)

Abstract

We propose a multiscale extension of a well-known line segment detector, LSD. We show that its multiscale nature makes it much less susceptible to over-segmentation and more robust to low contrast and less sensitive to noise, while keeping the parameter-less advantage of LSD and still being fast. We also present here a dense gradient filter that disregards regions in which lines are likely to be irrelevant. As it reduces line mismatches, this filter improves the robustness of the application to structure-from-motion. It also yields a faster detection.

Keywords

Companion Paper Coarse Scale Fast Detection Line Detector Structure From Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)CrossRefGoogle Scholar
  2. 2.
    Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a line segment detector. Image Process On Line (IPOL 2012) 2, 35–55 (2012). http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd CrossRefGoogle Scholar
  3. 3.
    Salaün, Y., Marlet, R., Monasse, P.: Multiscale line segment detector for robust and accurate SfM. In: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR) (2016)Google Scholar
  4. 4.
    Salaün, Y., Marlet, R., Monasse, P.: Robust and accurate line- and/or point-based pose estimation without Manhattan assumptions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 801–818. Springer, Cham (2016). doi: 10.1007/978-3-319-46478-7_49 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yohann Salaün
    • 1
    • 2
  • Renaud Marlet
    • 1
  • Pascal Monasse
    • 1
  1. 1.LIGM, UMR 8049École des Ponts, UPEChamps-sur-MarneFrance
  2. 2.CentraleSupélecChâtenay-MalabryFrance

Personalised recommendations