Towards a Secure RA2DL Based Approach

  • Farid Adaili
  • Olfa Mosbahi
  • Mohamed Khalgui
  • Samia Bouzefrane
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 703)

Abstract

This chapter deals with secured reconfigurable AADL based-control component of embedded system (to be named by RA2DL) that should be adapted their behaviours to environment execution according to user requirements. For various reasons, we propose a new method denoted by \(RA2DL-Pool\) for guarantee and control the security of RA2DL component. \(RA2DL-Pool\) is a container of sets of RA2DL components characterized by similar properties. Also, it holds well-defined methods for grouping RA2DL components together. To consolidate \(RA2DL-Pool\) technology, we will put a set of security-mechanisms divided into two families: (i) Authentication Mechanism where all users must authenticate to access to the reserved services of \(RA2DL-Pool\) or RA2DL components and (ii) Access Control Mechanism to control the access to the RA2DL components. We model and verify this solution and develop a tool for its simulation by taking a real-case study dealing with the Body-Monitoring System (BMS) as a running example.

Keywords

Pooling Component-based approach Dynamic reconfiguration Security Authentication Access control RA2DL Implementation Modelling Evaluation 

References

  1. 1.
    Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: New solutions for useful execution models of communicating adaptive RA2DL. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 87–101. Springer, Cham (2015). doi:10.1007/978-3-319-22689-7_7 CrossRefGoogle Scholar
  2. 2.
    Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl-pool: new useful solution to handle security of reconfigurable embedded systems. In: Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE), pp. 102–111, Rome, Italy (2016)Google Scholar
  3. 3.
    Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996). doi:10.1007/BFb0020949 CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)CrossRefGoogle Scholar
  5. 5.
    Bieliková, M.: A body-monitoring system with EEG and EOG sensors. J. ERCIM News 49, 50–52 (2002)Google Scholar
  6. 6.
    Brereton, P., Budgen, D.: Component-based systems: a classification of issues. Computer 33(11), 54–62 (2000)CrossRefGoogle Scholar
  7. 7.
    Xia Cai, M.R., Lyu, Wong, K.-F., Ko, R.: Component-based software engineering: technologies, development frameworks, and quality assurance schemes. In: Seventh Asia-Pacific Software Engineering Conference (APSEC 2000), Proceedings, pp. 372–379 (2000)Google Scholar
  8. 8.
    Clements, P.C.: A survey of architecture description languages. In: Proceedings of the 8th International Workshop on Software Specification and Design (IWSSD 1996), p. 16, Washington, DC, USA. IEEE Computer Society (1996)Google Scholar
  9. 9.
    Rugina, A.E., Kanoun, K., Kaâniche, M.: An architecture-based dependability modeling framework using AADL. In: 10th IASTED International Conference on Software Engineering and Applications (SEA 2006) (2006)Google Scholar
  10. 10.
    Adaili, F., Mosbahi, O., Khalgui, M., Bouzefrane, S.: Ra2dl: new flexible solution for adaptive AADL-based control components. In: Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems, pp. 247–258 (2015)Google Scholar
  11. 11.
    Hansson, J., Feiler, P.H., Morley, J.: Building secure systems using model-based engineering and architectural models. CrossTalk J. Defense Softw. Eng. 21(9), 12 (2008)Google Scholar
  12. 12.
    Husemann, D., Steinbugler, R., Striemer, B.: Body monitoring using local area wireless interfaces. US Patent Ap. 10/406,865, 7 October 2004Google Scholar
  13. 13.
    Oman, P., Alves-Foss, J., Harrison, W.S., Taylor, C.: The MILS architecture for high assurance embedded systems. Int. J. Embedded Syst. 2, 239–247 (2006)CrossRefGoogle Scholar
  14. 14.
    Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer, Heidelberg (2002). doi:10.1007/3-540-45800-X_32 CrossRefGoogle Scholar
  15. 15.
    Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension in embedded system design. In: Proceedings of the 41st Annual Design Automation Conference (DAC 2004), New York, NY, USA, pp. 753–760. ACM (2004). Moderator-Ravi, SrivathsGoogle Scholar
  16. 16.
    Mouratidis, H., Kolp, M., Faulkner, S., Giorgini, P.: A secure architectural description language for agent systems. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), New York, NY, USA, pp. 578–585. ACM (2005)Google Scholar
  17. 17.
    Anoop, M.S.: Security needs in embedded systems. Cryptology ePrint Archive, Report 2008/198 (2008). http://eprint.iacr.org/
  18. 18.
    Ray, A., Cleaveland, R.: A software architectural approach to security by design. In: 30th Annual International Computer Software and Applications Conference (COMPSAC 2006), Chicago, Illinois, USA, 17–21 September, vol. 2, pp. 83–86 (2006)Google Scholar
  19. 19.
    Ren, J., Taylor, R.: A secure software architecture description language. In: Workshop on Software Security Assurance Tools, Techniques, and Metrics, pp. 82–89 (2005)Google Scholar
  20. 20.
    Salem, M.O., Ben Mosbahi, O., Khalgui, M., Frey, G.: ZiZo: modeling, simulation and verification of reconfigurable real-time control tasks sharing adaptive resources - application to the medical project bros. In: Proceedings of the International Conference on Health Informatics, pp. 20–31 (2015)Google Scholar
  21. 21.
    Vergnaud, T., Pautet, L., Kordon, F.: Using the AADL to describe distributed applications from middleware to software components. In: Vardanega, T., Wellings, A. (eds.) Ada-Europe 2005. LNCS, vol. 3555, pp. 67–78. Springer, Heidelberg (2005). doi:10.1007/11499909_6 CrossRefGoogle Scholar
  22. 22.
    Yoon, E.-J., Lee, W.-S., Yoo, K.-Y.: Secure PAP-based RADIUS protocol in wireless networks. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. CCIS, vol. 2, pp. 689–694. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74282-1_77 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Farid Adaili
    • 1
    • 2
    • 3
  • Olfa Mosbahi
    • 1
  • Mohamed Khalgui
    • 1
    • 4
  • Samia Bouzefrane
    • 3
  1. 1.LISI Laboratory, INSAT InstituteUniversity of CarthageTunisTunisia
  2. 2.Tunisia Polytechnic SchoolUniversity of CarthageTunisTunisia
  3. 3.CEDRIC LaboratoryNational Conservatory of Arts and CraftsParisFrance
  4. 4.Systems Control LaboratoryXidian UniversityXianChina

Personalised recommendations