Onsager’s Variational Principle in Soft Matter: Introduction and Application to the Dynamics of Adsorption of Proteins onto Fluid Membranes

  • Marino ArroyoEmail author
  • Nikhil Walani
  • Alejandro Torres-Sánchez
  • Dimitri Kaurin
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 577)


Lipid bilayers are unique soft materials operating in general in the low Reynolds limit. While their shape is predominantly dominated by curvature elasticity as in a solid shell, their in-plane behavior is that of a largely inextensible viscous fluid. Furthermore, lipid membranes are extremely responsive to chemical stimuli. Because in their biological context they are continuously brought out-of-equilibrium mechanically or chemically, it is important to understand their dynamics. Here, we introduce Onsager’s variational principle as a general and transparent modeling tool for lipid bilayer dynamics. We introduce this principle with elementary examples, and then use it to study the sorption of curved proteins on lipid membranes.


Free Energy Area Fraction Solute Molecule Semipermeable Membrane Membrane Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. S. Aimon, A. Callan-Jones, A. Berthaud, M. Pinot, G.E.S. Toombes, P. Bassereau, Membrane shape modulates transmembrane protein distribution. Dev. Cell 28(2), 212–218 (2014)CrossRefGoogle Scholar
  2. B. Antonny, Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80, 101–123 (2011)CrossRefGoogle Scholar
  3. M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes. Phy. Rev. E 79, 031915 (2009)MathSciNetCrossRefGoogle Scholar
  4. M. Arroyo, A. DeSimone, L. Heltai, The role of membrane viscosity in the dynamics of fluid membranes. arXiv 2007, 1–21 (2010)Google Scholar
  5. M. Arroyo, L. Heltai, D. Millán, A. DeSimone, Reverse engineering the euglenoid movement. Proc. Natl. Acad. Sci. U. S. A. 44, 17874–17879 (2012)CrossRefGoogle Scholar
  6. J.W. Barrett, H. Garcke, R. Nürnberg, A Stable Numerical Method for the Dynamics of Fluidic Membranes, vol. 134 (Springer, Berlin, 2016)zbMATHGoogle Scholar
  7. M. Breidenich, R.R. Netz, R. Lipowsky, The shape of polymer-decorated membranes. 49, 431–437 (2000)Google Scholar
  8. A. Callan-Jones, M. Durand, J.-B. Fournier, Hydrodynamics of bilayer membranes with diffusing transmembrane proteins. Soft Matter 12(6), 1791–1800 (2016)CrossRefGoogle Scholar
  9. R. Capovilla, J. Guven, Stresses in lipid membranes. J. Phy. A: Math. Gen. 35(30), 6233–6247 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. M. Doi, Onsager’s variational principle in soft matter. J. Phys.: Condens. Matter 23(28), 284118 (2011)Google Scholar
  11. C.M. Elliott, B. Stinner, Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13(2), 325–360 (2013)MathSciNetCrossRefGoogle Scholar
  12. M.B. Elowitz, M.G. Surette, P.E. Wolf, J.B. Stock, S. Leibler, Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181(1), 197–203 (1999)Google Scholar
  13. A. Embar, J. Dolbow, E. Fried, Microdomain evolution on giant unilamellar vesicles. Biomech. Model. Mechanobiol. 12(3), 597–615 (2013)CrossRefGoogle Scholar
  14. E. Evans, A. Yeung, Hidden dynamics in rapid changes of bilayer shape. Chem. Phy. Lipids 73(1–2), 39–56 (1994)CrossRefGoogle Scholar
  15. F. Feng, W.S. Klug, Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220(1), 394–408 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 51–61 (1942)CrossRefGoogle Scholar
  17. J.-B. Fournier, N. Khalifat, N. Puff, M.I. Angelova, Chemically triggered ejection of membrane tubules controlled by intermonolayer friction. Phys. Rev. Lett. 102(1), 018102 (2009)CrossRefGoogle Scholar
  18. J.B. Fournier, On the hydrodynamics of bilayer membranes. Int. J. Non-Linear Mech. 75, 67–76 (2015)CrossRefGoogle Scholar
  19. H. Goldstein, Classical Mechanics, World student series (Addison-Wesley, Reading, 1980)zbMATHGoogle Scholar
  20. W.T. Góźdź, Shape transformation of lipid vesicles induced by diffusing macromolecules. J. Chem. Phys. 134(2) (2011)Google Scholar
  21. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1 (Springer Science & Business Media, 2012)Google Scholar
  22. M. Heinrich, A. Tian, C. Esposito, T. Baumgart, Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc. Natl. Acad. Sci. U. S. A. 107(16), 7208–7213 (2010a)CrossRefGoogle Scholar
  23. M.C. Heinrich, B.R. Capraro, A. Tian, J.M. Isas, R. Langen, T. Baumgart, Quantifying membrane curvature generation of drosophila amphiphysin N-BAR domains. J. Phys. Chem. Lett. 1(23), 3401–3406 (2010b)CrossRefGoogle Scholar
  24. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973)Google Scholar
  25. M.L. Huggins, Solutions of long chain compounds. J. Chem. Phys. 9(5), 440–440 (1941)CrossRefGoogle Scholar
  26. R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. F. Jülicher, R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett. 70(19), 2964–2967 (1993)CrossRefGoogle Scholar
  28. N. Khalifat, N. Puff, S. Bonneau, J.-B. Fournier, M.I. Angelova, Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys. J. 95(10), 4924–4933 (2008)CrossRefGoogle Scholar
  29. N. Khalifat, M. Rahimi, A.-F. Bitbol, M. Seigneuret, J.-B. Fournier, N. Puff, M. Arroyo, M.I. Angelova, Interplay of packing and flip-flop in local bilayer deformation. How phosphatidylglycerol could rescue mitochondrial function in a cardiolipin-deficient yeast mutant. Biophys. J. 107(4), 879–890 (2014)CrossRefGoogle Scholar
  30. A.J. Kosmalska, L. Casares, A. Elosegui-Artola, J.J. Thottacherry, R. Moreno-Vicente, V. González-Tarragó, M.Á. del Pozo, S. Mayor, M. Arroyo, D. Navajas, X. Trepat, N.C. Gauthier, P. Roca-Cusachs, Physical principles of membrane remodelling during cell mechanoadaptation. Nat. Commun. 6, 7292 (2015)CrossRefGoogle Scholar
  31. L.D. Landau, E.M. Lifshitz, Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6 (Elsevier, Amsterdam, 2013)Google Scholar
  32. A. Lew, J.E. Marsden, M. Ortiz, M. West, Variational time integrators. Int. J. Numer. Meth. Eng. 60(1), 153–212 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. R. Lipowsky, The conformation of membranes. Nature 349(6309), 475–481 (1991)CrossRefGoogle Scholar
  34. R. Lipowsky, Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013)CrossRefGoogle Scholar
  35. J. Liu, Y. Sun, D.G. Drubin, G.F. Oster, The mechanochemistry of endocytosis. PLoS Biol. 7(9), e1000204 (2009)CrossRefGoogle Scholar
  36. R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, vol. 3 (Wiley, New York, 1996)Google Scholar
  37. H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)CrossRefGoogle Scholar
  38. A. Mielke, A gradient structure for reactiondiffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011a). doi: 10.1088/0951-7715/24/4/016. ISSN 0951-7715
  39. A. Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity. GAMM Mitt. 34(1), 51–58 (2011b)MathSciNetCrossRefzbMATHGoogle Scholar
  40. A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete Continuous Dyn. Syst. - Ser. S 6(2), 479–499 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. L. Onsager, Irreversible processes. Phys. Rev. 37, 237–241 (1931a)MathSciNetCrossRefzbMATHGoogle Scholar
  42. L. Onsager, Reciprocal relations in irreversible processes I. Phys. Rev. 37(4), 405–426 (1931b)CrossRefzbMATHGoogle Scholar
  43. M. Ortiz, E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, New York, 2005)CrossRefGoogle Scholar
  45. F. Otto, The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  46. W. Pauli, C.P. Enz, Thermodynamics and the kinetic theory of gases, vol. 3 (Courier Corporation, 2000)Google Scholar
  47. C. Peco, A. Rosolen, M. Arroyo, An adaptive meshfree method for phase-field models of biomembranes. Part II: A Lagrangian approach for membranes in viscous fluids. J. Comput. Phys. 249, 320–336 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  48. M.A. Peletier, Variational modelling: energies, gradient flows, and large deviations, February 2014Google Scholar
  49. C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones, P. Bassereau, IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6, 8529 (2015)CrossRefGoogle Scholar
  50. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience Publishers, 1967)Google Scholar
  51. M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86(1), 011932 (2012)CrossRefGoogle Scholar
  52. M. Rahimi, A. DeSimone, M. Arroyo, Curved fluid membranes behave laterally as effective viscoelastic media. Soft Matter 9(46), 11033 (2013)CrossRefGoogle Scholar
  53. S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J.A. Killian, B. Poolman, Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 13135, 12650–12656 (2009)CrossRefGoogle Scholar
  54. P. Rangamani, A. Agrawal, K.K. Mandadapu, G. Oster, D.J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12(4), 833–845 (2013)CrossRefGoogle Scholar
  55. R. Rangarajan, H. Gao, A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266–294 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  56. Rayleigh, Proc. Math. Soc. London 363, 357 (1873)Google Scholar
  57. D.S. Rodrigues, R.F. Ausas, F. Mut, G.C. Buscaglia, Numerical modeling of tether formation in viscous. XXXII, 19–22 (2013)Google Scholar
  58. A. Rustom, R. Saffrich, I. Markovic, P. Walther, H.-H. Gerdes, Nanotubular highways for intercellular organelle transport. Sci. (New York, N.Y.) 303(5660), 1007–1010 (2004)CrossRefGoogle Scholar
  59. P.G. Saffman, M. Delbruck, Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U. S. A. 72(8), 3111–3113 (1975)Google Scholar
  60. R.A. Sauer, T.X. Duong, K. Mandadapu, D. Steigmann, A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 1–19 (2017)Google Scholar
  61. U. Seifert, S.A. Langer, Viscous modes of fluid bilayer membranes. Europhys. Lett. (EPL) 23(1), 71–76 (1993)CrossRefGoogle Scholar
  62. U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. (1997). July 2011Google Scholar
  63. P. Sens, L. Johannes, P. Bassereau, Biophysical approaches to protein-induced membrane deformations in trafficking. Curr. Opin. Cell Biol. 20(4), 476–482 (2008)CrossRefGoogle Scholar
  64. Z. Shi, T. Baumgart, Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. Commun. 6, 5974 (2015). May 2014CrossRefGoogle Scholar
  65. Y. Shibata, H. Junjie, M.M. Kozlov, T.A. Rapoport, Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25, 329–354 (2009)CrossRefGoogle Scholar
  66. P. Singh, P. Mahata, T. Baumgart, S.L. Das, Curvature sorting of proteins on a cylindrical lipid membrane tether connected to a reservoir. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 85(5), 1–10 (2012)CrossRefGoogle Scholar
  67. B. Sinha, D. Köster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R.V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R.G. Parton, G. Raposo, P. Sens, C. Lamaze, P. Nassoy, Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3), 402–413 (2011)CrossRefGoogle Scholar
  68. B. Sorre, A. Callan-Jones, J.-B. Manneville, P. Nassoy, J.-F. Joanny, J. Prost, B. Goud, P. Bassereau, Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc. Natl. Acad. Sci. U. S. A. 106(14), 5622–5626 (2009)CrossRefGoogle Scholar
  69. B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P. Bassereau, A. Roux, Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl. Acad. Sci. U. S. A. 109(1), 173–178 (2012)CrossRefGoogle Scholar
  70. H. Sprong, P. van der Sluijs, G. van Meer, How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2(7), 504–513 (2001)CrossRefGoogle Scholar
  71. J.C. Stachowiak, E.M. Schmid, C.J. Ryan, H.S. Ann, D.Y. Sasaki, M.B. Sherman, P.L. Geissler, D.A. Fletcher, C.C. Hayden, Membrane bending by proteinprotein crowding. Nat. Cell Biol. 14(9), 944–949 (2012)CrossRefGoogle Scholar
  72. M. Staykova, M. Arroyo, M. Rahimi, H.A. Stone, Confined bilayers passively regulate shape and stress. Phys. Rev. Lett. 110, 028101 (2013)CrossRefGoogle Scholar
  73. D.J. Steigmann, On the relationship between the Cosserat and Kirchhoff-Love theories of elastic shells. Math. Mech. Solids 4, 275–288 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  74. M. Terasaki, T. Shemesh, N. Kasthuri, R.W. Klemm, R. Schalek, K.J. Hayworth, A.R. Hand, M. Yankova, G. Huber, J.W. Lichtman, T.A. Rapoport, M.M. Kozlov, Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154(2), 285–296 (2013)CrossRefGoogle Scholar
  75. Z.C. Tu, Z.C. Ou-Yang, A geometric theory on the elasticity of bio-membranes. J. Phys. A: Math. Gen. 37(47), 11407–11429 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  76. N. Yamaguchi, T. Mizutani, K. Kawabata, H. Haga, Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin \(\beta \)1 and PI3K. Sci. Rep. 5, 7656 (2015)CrossRefGoogle Scholar
  77. C. Zhu, S.L. Das, T. Baumgart, Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys. J. 102(8), 1837–1845 (2012)CrossRefGoogle Scholar
  78. J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  • Marino Arroyo
    • 1
    Email author
  • Nikhil Walani
    • 1
  • Alejandro Torres-Sánchez
    • 1
  • Dimitri Kaurin
    • 1
  1. 1.Universitat Politècnica de Catalunya - BarcelonaTechBarcelonaSpain

Personalised recommendations