Advertisement

Service-Oriented Architectures for Interoperability in Industrial Enterprises

  • Ahmed IsmailEmail author
  • Wolfgang Kastner
Chapter

Abstract

This chapter focuses on the technological aspects involved in developing a service-oriented solution for interoperability in the context of cyber-physical production systems (CPPS). It addresses the typical state of industrial enterprises and the core technologies currently available for the development of a service-oriented (SO) solution for agile environments. The chapter therefore discusses features of the service-oriented paradigm as well as aspects related to enterprise and network architectures, constraints, and technologies to discern the current challenges facing modern enterprises. The chapter also explores the service-oriented reference architectures of recent EU projects to highlight their main characteristics. Finally, their respective realizations are decomposed to discern the connectivity strategies and standards employed by each to achieve an interoperability-focused technology stack for the operation of agile and flexible industrial plants.

Keywords

Horizontal integration Interoperability Service-oriented architectures Technology stack Vertical integration 

Notes

Acknowledgements

This paper is supported by Technische Universität Wien research funds as part of the Doctoral College Cyber-Physical Production Systems.

References

  1. Angelov, S., Grefen, P., et al.: A framework for analysis and design of software reference architectures. Inf. Softw. Technol. 54 (4), 417–431 (2012)CrossRefGoogle Scholar
  2. Arrowhead Consortium: Arrowhead demo T4.2. Technical report (2014a)Google Scholar
  3. Arrowhead Consortium: WP 4—T4.1 Demonstrator (1st Generation): The Safe Home. Technical report (2014b)Google Scholar
  4. Arrowhead Consortium: WP3.1.2 PO 002 - Requirements definition - Communication and services. Technical report, Arrowhead Consortium (2014c)Google Scholar
  5. Ballinger, K., Bissett, B., et al.: Web Services Metadata Exchange 1.1 (WS- MetadataExchange). (2008)Google Scholar
  6. Bellavista, P., Ornato, M.: Arrowhead D3.3 Appendix 3.3b PO 3.3-002 and PO 3.3-004 of Task 3.3 Details about First Generation Pilot Results. Technical report (2014)Google Scholar
  7. Ben-Kiki, O., Evans, C., et al.: YAML Ain’t Markup Language (YAML) (tm) Version 1.2., YAML.org. (2009)Google Scholar
  8. Blomstedt, F.: Service Discovery REST_WS-XML-SPSDTR Version 1.1. Technical report, The Arrowhead Consortium (2016a)Google Scholar
  9. Blomstedt, F.: ServiceRegistryBridge Version 1.1. Technical report, The Arrowhead Consortium (2016b)Google Scholar
  10. Blomstedt, F., Olofsson, P.: Orchestration System Version 1.1. Technical report, The Arrowhead Consortium (2016a)Google Scholar
  11. Blomstedt, F., Olofsson, P.: Service Discovery DNS-SD-TSIG-SPDNS Version 1.3. Technical report, The Arrowhead Consortium (2016b)Google Scholar
  12. Blomstedt, F., Olofsson, P.: Service Discovery REST_WS-JSON-SPSDTR Version 1.1. Technical report, The Arrowhead Consortium (2016c)Google Scholar
  13. Blomstedt, F., Contini, L., et al.: Deliverable D8.3. Technical report, Arrowhead Consortium (2014a)Google Scholar
  14. Blomstedt, F., Ferreira, L., et al.: The arrowhead approach for SOA application development and documentation. In: 40th Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 2631–2637 (2014b)Google Scholar
  15. Bocchio, S., Ornato, M.: Arrowhead D3.3 Appendix 3.1.1.c PO 002 of Task 3.1.1 Task and concepts. Technical report (2014)Google Scholar
  16. Bony, B., Harnischfeger, M., et al.: Convergence of OPC UA and DPWS with a cross-domain data model. In: 9th IEEE International Conference on Industrial Informatics (INDIN) (2011)Google Scholar
  17. Box, D., Ehnebuske, D., et al.: Simple Object Access Protocol (SOAP) 1.1. W3C Note. World Wide Web Consortium (2000)Google Scholar
  18. Building Performance Institute, Inc.: BPI-2100-S-2013 Standard for Home Performance-Related Data Transfer. (2013a)Google Scholar
  19. Building Performance Institute, Inc.: BPI-2200-S-2013 Standard for Home Performance-Related Data Collection. (2013b)Google Scholar
  20. Bullen, G., Carter, S., et al.: Web Services Dynamic Discovery (WS-Discovery) Version 1.1. Organization for the Advancement of Structured Information Standards (2009)Google Scholar
  21. Cheshire, S., Krochmal, M.: RFC 6762: Multicast DNS. Technical report (2013)Google Scholar
  22. Choudri, A.: The agile enterprise. In: ReVelle, J. (ed.) Manufacturing Handbook of Best Practices: An Innovation, Productivity and Quality Focus, pp. 3–23. CRC Press, Boca Raton (2001)Google Scholar
  23. Chrysoulas, C., Jansson, O.: Arrowhead System Description (SysD) - Translation System Version 0.4. Technical report, The Arrowhead Consortium (2016)Google Scholar
  24. Colombo, A., Bangemann, T., Karnouskos, S.: IMC-AESOP outcomes: Paving the way to collaborative manufacturing systems. In: 12th International Conference on Industrial Informatics (INDIN) (2014a)Google Scholar
  25. Colombo, A., Bangemann, T., Karnouskos, S., et al., (eds.): Industrial Cloud-Based Cyber-Physical Systems. Springer, Cham (2014b). ISBN:978-3-319-05623-4 978-3-319-05624-1Google Scholar
  26. Corrêa, H.: Agile manufacturing as the 21st century strategy for improving manufacturing competitiveness. In: Gunasekaran, A. (ed.) Agile Manufacturing: The 21st Century Competitive Strategy, pp. 3–23. Elsevier Science Ltd, Oxford (2001)CrossRefGoogle Scholar
  27. Delsing, J.: Building automation systems from Internet of Things. In: Presented as an 20th IEEE International Conference on Emerging Technologies and Factory Automation Keynote Presentation, Luxembourg (2015)Google Scholar
  28. Dennert, A., Montemayor, J., et al.: Advanced concepts for flexible data integration in heterogeneous production environment. In: IFAC Proceedings Volumes 46(7), 348–353 (2013)Google Scholar
  29. Derhamy, H.: Arrowhead transparency protocol translation. In: Presented at the Arrowhead Budapest Meeting (2015)Google Scholar
  30. Dürkop, L., Imtiaz, J., et al.: Service-oriented architecture for the autocon- figuration of real-time Ethernet systems. In: 3rd Annual Colloquium Communication in Automation (KommA) (2012)Google Scholar
  31. Durkop, L., Imtiaz, J., et al.: Using OPC-UA for the autoconfiguration of real-time Ethernet systems. In: 11th International Conference on Industrial Informatics (INDIN) (2013)Google Scholar
  32. Eliasson, J.: Arrowhead historian system. In: Presented at the Arrowhead Budapest Meeting (2015)Google Scholar
  33. Eliasson, J., Delsing, J., et al.: A SOA-based framework for integration of intelligent rock bolts with Internet of things. In: IEEE International Conference on Industrial Technology (ICIT) (2013)Google Scholar
  34. Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River, NJ (2008)Google Scholar
  35. Erl, T.: SOA Design Patterns, 1st edn. Prentice Hall Service-Oriented Computing Series from Thomas Erl. Prentice Hall, Upper Saddle River, NJ (2009)Google Scholar
  36. Erl, T., Gee, C., et al.: Next Generation SOA: A Concise Introduction to Service Technology and Service-Orientation. Pearson Education, Upper Saddle River (2014)Google Scholar
  37. eScop Consortium: 1st Annual Report. Technical report. http://www.escop-project.eu/wp-content/uploads/2013/05/D14_eScop_Annual_Report1_publishable-summary.pdf (2013). Visited on 08 Dec 2016
  38. eScop Consortium: D2.4 General specification and design of eScop reference architecture. Technical report (2014)Google Scholar
  39. eScop Consortium: eScop Architecture. Technical report (n.d.[a])Google Scholar
  40. eScop Consortium: Orchestration Layer Training Material. Technical report (n.d.[b])Google Scholar
  41. eScop Consortium: Semantic Workbench. Technical report (n.d.[c])Google Scholar
  42. Faist, J., Štětina, M.: Webservice-ready configurable devices for intelligent manufacturing systems. In: IFIP International Conference on Advances in Production Management Systems (APMS). Springer, Heidelberg (2015)Google Scholar
  43. Fielding, R., Reschke, J.: RFC 7235: Hypertext Transfer Protocol (HTTP/1.1): Authentication. Technical report (2014)Google Scholar
  44. Fischer, K., Gesner, J.: Security architecture elements for IoT enabled automation networks. In: IEEE 17th Conference on Emerging Technologies Factory Automation (ETFA) (2012)Google Scholar
  45. Fumagalli, L., Pala, S., et al.: Ontology-based modeling of manufacturing and logistics systems for a new MES architecture. In: IFIP International Conference on Advances in Production Management Systems (APMS), pp. 192–200. Springer, Heidelberg (2014)Google Scholar
  46. Galiegue, F., Zyp, K., et al.: JSON Schema: core definitions and terminology. Technical report, Internet Engineering Task Force (2013a)Google Scholar
  47. Galiegue, F., Zyp, K., et al.: JSON Schema: interactive and non interactive validation. Technical report, Internet Engineering Task Force (2013b)Google Scholar
  48. Garibay-Martínez, R., Nelissen, G., et al.: Task partitioning and priority assignment for hard real-time distributed systems. In: 2nd International Workshop on Real-Time and Distributed Computing in Emerging Applications (2013)Google Scholar
  49. Garibay-Martínez, R., Ferreira, L., et al.: Towards holistic analysis for fork-join parallel/distributed real-time tasks. In: 26th Euromicro Conference on Real-Time Systems (2014a)Google Scholar
  50. Garibay-Martínez, R., Nelissen, G., et al.: On the scheduling of fork-join parallel/distributed real-time tasks. In: 9th IEEE International Symposium on Industrial Embedded Systems (SIES) (2014b)Google Scholar
  51. Gazis, V., Görtz, M., et al.: A survey of technologies for the internet of things. In: 2015 International Wireless Communications and Mobile Computing Conference (IWCMC) (2015)Google Scholar
  52. Gusmeroli, S., Piccione, S., et al.: A capability-based security approach to manage access control in the Internet of Things. Math. Comput. Model. 58 (5-6), 1189–1205 (2013)CrossRefGoogle Scholar
  53. Hästbacka, D., Barna, L., et al.: Device status information service architecture for condition monitoring using OPC UA. In: 19th International Conference on Emerging Technology and Factory Automation (ETFA) (2014)Google Scholar
  54. Henßen, R., Schleipen, M.: Interoperability between OPC UA and AutomationML. In: Procedia CIRP, vol. 25, pp. 297–304 (2014)Google Scholar
  55. Hill, B.: Evaluation of efficient XML interchange (EXI) for large datasets and as an alternative to binary JSON encodings. Technical report, DTIC Document (2015)Google Scholar
  56. Houyou, A., Huth, H., et al.: D2.2- Bootstrapping Architecture. Technical report, IoT@Work Consortium (2011)Google Scholar
  57. Iarovyi, S., Garcia, J., et al.: An approach for OSGi and DPWS interoperability: Bridging enterprise application with shop-floor. In: 11th International Conference on Industrial Informatics (INDIN) (2013)Google Scholar
  58. Iarovyi, S., Ramis, B., et al.: Representation of manufacturing equipment and services for OKD-MES: from service descriptions to ontology. In: 13th International Conference on Industrial Informatics (INDIN) (2015a)Google Scholar
  59. Iarovyi, S., Xu, X., et al.: Architecture for open, knowledge-driven manufacturing execution system. In: IFIP International Conference on Advances in Production Management Systems (APMS), vol. 460. Springer, Cham (2015b)Google Scholar
  60. Iarovyi, S., Mohammed, W., et al.: Cyber-physical systems for open-knowledge-driven manufacturing execution systems. Proc. IEEE 104 (5), 1142–1154 (2016)CrossRefGoogle Scholar
  61. Imtiaz, J., Jasperneite, J.: Scalability of OPC-UA down to the chip level enables “Internet of Things”. In: 11th International Conference on Industrial Informatics (INDIN), pp. 500–505 (2013)Google Scholar
  62. Imtiaz, J., Dürkop, L., et al.: D. 2.5 - Integrated Secure Plug&Work Frame-work. Technical report, IoT@Work Consortium (2013)Google Scholar
  63. Ismail, A., Kastner, W.: Vertical integration in industrial enterprises and distributed middleware. Int. J. Internet Protoc. Technol. 9 (2/3), 79–89 (2016)CrossRefGoogle Scholar
  64. Jammes, F.: Real time device level service-oriented architectures. In: IEEE 20th International Symposium on Industrial Electronics (ISIE) (2011)Google Scholar
  65. Jennings, C., Shelby, Z., et al.: Media Types for Sensor Markup Language (SenML). Technical report (2016)Google Scholar
  66. Jeyaraman, R., Modi, V., et al.: Understanding Devices Profile for Web Services, Web Services Discovery, and SOAP-over-UDP. Technical report, Microsoft Corporation (2008)Google Scholar
  67. Kleyko, D.: System-of-Systems Design (SoSDD) LTU Core Framework Description. Technical report (2016)Google Scholar
  68. Knapp, E.: Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, Scada, and Other Industrial Control Systems, 2nd edn. Elsevier, Waltham, MA (2014)Google Scholar
  69. Krafzig, D., Banke, K., et al.: Enterprise SOA: Service-Oriented Architecture Best Practices. The Coad Series. Prentice Hall Professional Technical Reference, Indianapolis, IN (2005)Google Scholar
  70. Krämer, B.: Evolution of cyber-physical systems: a brief review. In: Applied Cyber-Physical Systems. Springer, New York (2014)Google Scholar
  71. Krimm, J., Olofsson, P., et al.: Deliverable D8.2 of Work Package 8: Common Service Framework - Generation 1 Version 1.1. Technical report, The Arrow-head Consortium (2014)Google Scholar
  72. Kyusakov, R., Pereira, P., et al.: EXIP: a framework for embedded Web development. ACM Trans.Web (TWEB) 8 (4), 23 (2014)Google Scholar
  73. Le Pape, C., Desdouits, C., et al.: Deliverable D1.3 of WP1. Technical report, Arrowhead Consortium (2014)Google Scholar
  74. Lesjak, C., Ruprechter, T., et al.: ESTADO-Enabling smart services for industrial equipment through a secured, transparent and ad-hoc data transmission online. In: IEEE 9th International Conference for Internet Technology and Secured Transactions (ICITST) (2014)Google Scholar
  75. Lindgren, P., Pietrzak, P., et al.: Real-time complex event processing using concurrent reactive objects. In: IEEE International Conference on Industrial Technology (ICIT) (2013)Google Scholar
  76. Luzuriaga, J., Perez, M., et al.: A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In: 12th Annual Conference on Consumer Communications and Networking Conference (CCNC) (2015)Google Scholar
  77. Mahmoud, Q. (ed.): Middleware for Communications. Wiley, Chichester/Hoboken, NJ (2004)Google Scholar
  78. Mahnke, W., Leitner, S., et al.: OPC Unified Architecture. Springer, Berlin/Heidelberg (2009)CrossRefGoogle Scholar
  79. Moreau, J., Nielsen, H., et al.: SOAP Version 1.2 Part 2: Adjuncts, 2nd edn. W3C Recommendation. World Wide Web Consortium (2007)Google Scholar
  80. Nagorny, K., Colombo, A., et al.: A survey of service-based systems-of-systems manufacturing systems related to product life-cycle support and energy efficiency. In: 12th IEEE International Conference on Industrial Informatics (INDIN) (2014)Google Scholar
  81. Nappey P., El Kaed, C., et al.: Migration of a legacy plant lubrication system to SOA. In: 39th Annual Conference of the IEEE Industrial Electronics Society (IECON) (2013)Google Scholar
  82. Negri, E., Fumagalli, L., Macchi, M., et al.: Ontology for service- based control of production systems. In: Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth, vol. 460, pp. 484–492. Springer, Cham (2015)Google Scholar
  83. Negri, E., Fumagalli, L., Garetti, M., et al.: Requirements and languages for the semantic representation of manufacturing systems. Comput. Ind. 81, 55–66 (2016)CrossRefGoogle Scholar
  84. OASIS: Advanced Message Queuing Protocol (AMQP) Version 1.0. In: Godfrey, R., Ingham, D., et al. (ed.) (2012)Google Scholar
  85. OASIS Security Services (SAML) TC: Technical report (n.d.)Google Scholar
  86. Pietrzak, P., Kyusakov, R., et al.: Roadmap for SOA event processing and service execution in real-time using Timber. In: IEEE 20th International Symposium on Industrial Electronics (ISIE) (2011)Google Scholar
  87. PLANTCockpit Consortium: D3.1 Initial Architectural Components of PLANTCockpit. Technical report (2011a)Google Scholar
  88. PLANTCockpit Consortium: Technical Report Persistency and Synchronization Model. Technical report (2011b)Google Scholar
  89. PLANTCockpit Consortium: PLANTCockpit White Paper. Technical report, http://plantcockpit.eu/fileadmin/PLANTCOCKPIT/user_upload/PLANTCockpit_D3.3_Public.pdf (2012a). Visited on 03 Mar 2015
  90. PLANTCockpit Consortium: Data and Process Model, First Draft. Technical report (2012b)Google Scholar
  91. PLANTCockpit Consortium: External Interface Specification, First Draft. Technical report (2012c)Google Scholar
  92. PLANTCockpit Consortium: Generic Alarms and Events Data Format. Technical report (2012d)Google Scholar
  93. PLANTCockpit Consortium: Project Final Report. Technical report (2014)Google Scholar
  94. Ratovsky R., Gardiner, M., et al.: OpenAPI Specification Version 2.0. Technical report. Open API Initiative (2014)Google Scholar
  95. Reschke, J.: RFC 7617: The ‘Basic’ HTTP Authentication Scheme. Technical report (2015)Google Scholar
  96. Rescorla, E.: RFC 2818: HTTP over TLS. Technical report (2000)Google Scholar
  97. Richards, M.: Understanding the differences between AMQP & JMS. In: Proceedings of the No Fluff Just StuffTM Java Conference Series (2011)Google Scholar
  98. Richards, M., Monson-Haefel, R., et al.: Java Message Service, 2nd edn. O’Reilly, Sebastopol, CA (2009)Google Scholar
  99. Rotondi, D., Galipò, A., et al.: D1.1 State of the Art and Functional Requirements in Manufacturing and Automation. Technical report. IoT@Work Consortium (2010)Google Scholar
  100. Rotondi, D., Piccione, S., et al.: D1.3 - Final Framework Architecture Specification. Technical report, IoT@Work Consortium (2013)Google Scholar
  101. Rubio, J.: Service oriented architecture for embedded (avionics) applications. Ph.D. thesis, Technical University of Catalonia (2011)Google Scholar
  102. Sadrollah, G., Barca, J., et al.: A distributed framework for supporting 3D swarming applications. In: International Conference on Computer and Information Sciences (ICCOINS) (2014)Google Scholar
  103. Saint-Andre, P.: RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core. Technical report (2011)Google Scholar
  104. Sauter T., Soucek, S., et al.: Vertical integration. In: Wilamowski, B., Irwin, J. (eds.) Industrial Communication Systems, 2nd edn., pp. 1–12. CRC Press, London (2011)CrossRefGoogle Scholar
  105. Severa, O., Faist, J., et al.: eScopRTU with Service Manager. Technical report, eScop Consortium (n.d.)Google Scholar
  106. Shelby, Z.: RFC 6690: Constrained RESTful Environments (CoRE) Link Format. Technical report (2012)Google Scholar
  107. Shelby Z., Hartke, K., et al.: RFC 7252: The Constrained Application Protocol (CoAP). Technical report (2014)Google Scholar
  108. Simone, P., Obluska, I., et al.: D6.1 Test strategy. Technical report (n.d.)Google Scholar
  109. Skou, A., Lino Ferreira, L., et al.: Deliverable D5.3 of WP 5. Technical report, Arrowhead Consortium (2014)Google Scholar
  110. Valipour M., AmirZafari, B., et al.: A brief survey of software architecture concepts and service oriented architecture. In: 2nd International Conference on Computer Science and Information Technology (ICCSIT) (2009)Google Scholar
  111. Varga, P., Martínez de Soria, I., et al.: Deliverable D7.3 of WP 7. Technical report, Arrowhead Consortium (2014)Google Scholar
  112. Zurawski, R. (ed.): The Industrial Communication Technology Handbook. Industrial Information Technology Series. Taylor & Francis/CRC Press, Boca Raton (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computer Aided AutomationTechnische Universität WienWienAustria

Personalised recommendations