Advertisement

An Illustration of the Epanechnikov and Adaptive Continuization Methods in Kernel Equating

  • Jorge GonzálezEmail author
  • Alina A. von Davier
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 196)

Abstract

Gaussian kernel continuization of the score distributions has been the standard choice in kernel equating. In this paper we illustrate the use of both the Epanechnikov and adaptive kernels in the actual equating step using the R package SNSequate (González, J Stat Softw 59(7):1–30, 2014). The two new kernel equating methods are compared with each other and with the Gaussian, logistic, and uniform kernels.

Keywords

Kernel equating Epanechnikov kernel Adaptive kernel Continuization 

Notes

Acknowledgements

The first author acknowledges partial support of grant Fondecyt 1150233. The authors thank Ms. Laura Frisby, ACT, for editorial help.

References

  1. J.A. Cid, A.A. von Davier, Examining potential boundary bias effects in kernel smoothing on equating: an introduction for the adaptive and Epanechnikov kernels. Appl. Psychol. Meas. 39 (3), 208–222 (2015)CrossRefGoogle Scholar
  2. N.J. Dorans, M.D. Feigenbaum, Equating issues engendered by changes to the SAT and PSAT/NMSQT. Technical issues related to the introduction of the new SAT and PSAT/NMSQT (1994), pp. 91–122Google Scholar
  3. V.A. Epanechnikov, Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14, 153–158 (1969)MathSciNetCrossRefGoogle Scholar
  4. J. González, SNSequate: standard and nonstandard statistical models and methods for test equating. J. Stat. Softw. 59 (7), 1–30 (2014)CrossRefGoogle Scholar
  5. J. González, M. von Davier, Statistical models and inference for the true equating transformation in the context of local equating. J. Educ. Meas. 50 (3), 315–320 (2013)CrossRefGoogle Scholar
  6. J. González, M. Wiberg, Applying Test Equating Methods Using R (Springer, New York, 2017)CrossRefGoogle Scholar
  7. P.W. Holland, D.T. Thayer, The kernel method of equating score distributions. Technical report, Educational Testing Service, Princeton, NJ, 1989Google Scholar
  8. J.A. Keats, F.M. Lord, A theoretical distribution for mental test scores. Psychometrika 27 (1), 59–72 (1962)CrossRefGoogle Scholar
  9. M.J. Kolen, R.L. Brennan, Test Equating, Scaling, and Linking: Methods and Practices, 3rd edn. (Springer, New York, 2014)CrossRefGoogle Scholar
  10. Y.H. Lee, A.A. von Davier, Equating through alternative kernels, in Statistical Models for Test Equating, Scaling, and Linking, vol. 1, ed. by A.A. von Davier (Springer, New York, 2011), pp. 159–173Google Scholar
  11. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986)CrossRefGoogle Scholar
  12. A.A. von Davier, Statistical Models for Test Equating, Scaling, and Linking (Springer, New York, 2011)CrossRefGoogle Scholar
  13. A.A. von Davier, P.W. Holland, D.T. Thayer, The Kernel Method of Test Equating (Springer, New York, 2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of MathematicsPontificia Universidad Católica de ChileSantiagoChile
  2. 2.ACTNext by ACT, Inc.Iowa CityUSA

Personalised recommendations