Recommendation with Heterogeneous Information

  • Chuan ShiEmail author
  • Philip S. Yu
Part of the Data Analytics book series (DAANA)


Recently, heterogeneous information network (HIN) analysis has attracted a lot of attention, and many data mining tasks have been exploited on HIN. As an important data mining task, recommender system includes a lot of object types (e.g., users, movies, actors, and interest groups in movie recommendation) and the rich relations among object types, which naturally constitute an HIN. The comprehensive information integration and rich semantic information of HIN make it promising to generate better recommendation. In this chapter, we introduce three works on recommendation with HIN. One work recommends items with semantic meta paths, and the other two works extend traditional matrix factorization with rich heterogeneous information.


  1. 1.
    BellogíN, R., Cantador, I., Castells, P.: A comparative study of heterogeneous item recommendations in social systems. Inf. Sci. 221, 142–169 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cantador, I., Bellogin, A., Vallet, D.: Content-based recommendation in social tagging systems. In: RecSys, pp. 237–240 (2010)Google Scholar
  3. 3.
    Cao, X., Zheng, Y., Shi, C., Li, J., Wu, B.: Link prediction in Schema-Rich heterogeneous information network. In: PAKDD, pp. 449–460 (2016)Google Scholar
  4. 4.
    Jamali, M., Ester, M.: Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: KDD, pp. 397–406 (2009)Google Scholar
  5. 5.
    Jamali, M., Lakshmanan, L.V.S.: HeteroMF: recommendation in heterogeneous information networks using context dependent factor models. In: WWW, pp. 643–654 (2013)Google Scholar
  6. 6.
    Lao, N., Cohen, W.: Fast query execution for retrieval models based on path constrained random walks. In: KDD, pp. 881–888 (2010)Google Scholar
  7. 7.
    Lin, C.J.: Projected gradient methods for non-negative matrix factorization. In: Neural Computation, pp. 2279–2756 (2007)Google Scholar
  8. 8.
    Lippert, C., Weber, S.H., Huang, Y., Tresp, V., Schubert, M., Kriegel, H.P.: Relation prediction in multi-relational domains using matrix factorization. In: NIPS Workshop on Structured Input Structure Output (2008)Google Scholar
  9. 9.
    Luo, C., Pang, W., Wang, Z.: Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations. In: ICDM, pp. 917–922 (2014)Google Scholar
  10. 10.
    Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: social recommendation using probabilistic matrix factorization. In: CIKM, pp. 931–940 (2008)Google Scholar
  11. 11.
    Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In: SIGIR, pp. 203–210 (2009)Google Scholar
  12. 12.
    Ma, H., Zhou, T.C., Lyu, M.R., King, I.: Improving recommender systems by incorporating social contextual information. ACM Trans. Inf. Syst. 29(2), 9 (2011)CrossRefGoogle Scholar
  13. 13.
    Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM, pp. 287–296 (2011)Google Scholar
  14. 14.
    Salakhutdinov, R., Mnih, A., Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS 20, 1257–1264 (2008)Google Scholar
  15. 15.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: Sigchi Conference on Human Factors in Computing Systems, pp. 210–217 (1995)Google Scholar
  16. 16.
    Shi, C., Kong, X., Huang, Y., Philip, S.Y., Wu, B.: Hetesim: a general framework for relevance measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)CrossRefGoogle Scholar
  17. 17.
    Shi, C., Liu, J., Zhuang, F., Yu, P.S., Wu, B.: Integrating heterogeneous information via flexible regularization framework for recommendation. Knowl. Inf. Syst. 49(3), 1–25 (2015)Google Scholar
  18. 18.
    Srebro, N., Jaakkola, T.: Weighted low-rank approximations. In: ICML, pp. 720–727 (2003)Google Scholar
  19. 19.
    Sun, Y.Z., Han, J.W., Yan, X.F., Yu, P.S., Wu, T.: PathSim: meta path-based top-K similarity search in heterogeneous information networks. In: VLDB, pp. 992–1003 (2011)Google Scholar
  20. 20.
    Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. SIGKDD Explor. 14(2), 20–28 (2012)CrossRefGoogle Scholar
  21. 21.
    Yang, X., Steck, H., Liu, Y.: Circle-based recommendation in online social networks. In: KDD, pp. 1267–1275 (2012)Google Scholar
  22. 22.
    Yu, X., Ren, X., Gu, Q., Sun, Y., Han, J.: Collaborative filtering with entity similarity regularization in heterogeneous information networks. In: IJCAI-HINA Workshop (2013)Google Scholar
  23. 23.
    Yu, X., Ren, X., Sun, Y., Sturt, B., Khandelwal, U., Gu, Q., Norick, B., Han, J.: Recommendation in heterogeneous information networks with implicit user feedback. In: RecSys, pp. 347–350 (2013)Google Scholar
  24. 24.
    Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han, J.: Personalized entity recommendation: a heterogeneous information network approach. In: WSDM, pp. 283–292 (2014)Google Scholar
  25. 25.
    Yuan, Q., Chen, L., Zhao, S.: Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation. In: RecSys, pp. 245–252 (2011)Google Scholar
  26. 26.
    Zheng, J., Liu, J., Shi, C., Zhuang, F., Li, J., Wu, B.: Dual similarity regularization for recommendation. In: PAKDD, pp. 542–554 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina
  2. 2.University of Illinois at ChicagoChicagoUSA

Personalised recommendations