Advertisement

Survey of Current Developments

  • Chuan ShiEmail author
  • Philip S. Yu
Chapter
Part of the Data Analytics book series (DAANA)

Abstract

Heterogeneous information network (HIN) provides a new paradigm to manage networked data. Meanwhile, it also introduces new challenges for many data mining tasks. Here, we give a brief survey on recent developments of this field. Concretely, we have analyzed more than 100 referred papers published in the referred conferences and journals in recent years and divided them into seven categories according to their data mining tasks. In this chapter, we will summarize the developments on these seven main data mining tasks. Moreover, these data mining tasks are coarsely ordered from basic task to advanced task.

Keywords

Recommended System Heterogeneous Network Community Detection Nonnegative Matrix Factorization Link Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggarwal, C., Xie, Y., Yu, P.: Towards community detection in locally heterogeneous networks. In: SDM, pp. 391–402 (2011)Google Scholar
  2. 2.
    Aggarwal, C.C., Xie, Y., Yu, P.S.: On dynamic link inference in heterogeneous networks. In: SDM, pp. 415–426 (2012)Google Scholar
  3. 3.
    Aggarwal, C.C., Xie, Y., Yu, P.S.: A framework for dynamic link prediction in heterogeneous networks. Stat. Anal. Data Min. ASA Data Sci. J. 7(1), 14–33 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alqadah, F., Bhatnagar, R.: A game theoretic framework for heterogeneous information network clustering. In: KDD, pp. 795–802 (2011)Google Scholar
  5. 5.
    Angelova, R., Kasneci, G., Weikum, G.: Graffiti: graph-based classification in heterogeneous networks. In: WWW, pp. 139–170 (2012)Google Scholar
  6. 6.
    Bangcharoensap, P., Murata, T., Kobayashi, H., Shimizu, N.: Transductive classification on heterogeneous information networks with edge betweenness-based normalization. In: WSDM, pp. 437–446 (2016)Google Scholar
  7. 7.
    Boden, B., Ester, M., Seidl, T.: Density-based subspace clustering in heterogeneous networks. In: ECML/PKDD, pp. 149–164 (2014)Google Scholar
  8. 8.
    Bu, S., Hong, X., Peng, Z., Li, Q.: Integrating meta-path selection with user-preference for top-k relevant search in heterogeneous information networks. In: CSCWD, pp. 301–306 (2014)Google Scholar
  9. 9.
    Burke, R., Vahedian, F., Mobasher, B.: Hybrid recommendation in heterogeneous networks. In: UMAP, pp. 49–60 (2014)Google Scholar
  10. 10.
    Cao, B., Kong, X., Yu, P.S.: Collective prediction of multiple types of links in heterogeneous information networks. In: ICDM, pp. 50–59 (2014)Google Scholar
  11. 11.
    Chen, J., Gao, H., Wu, Z., Li, D.: Tag co-occurrence relationship prediction in heterogeneous information networks. In: ICPADS, pp. 528–533 (2013)Google Scholar
  12. 12.
    Chen, J., Dai, W., Sun, Y., Dy, J.: Clustering and ranking in heterogeneous information networks via gamma-poisson model. In: SDM, pp. 425–432 (2015)Google Scholar
  13. 13.
    Chen, S.D., Chen, Y.Y., Han, J., Moulin, P.: A feature-enhanced ranking-based classifier for multimodal data and heterogeneous information networks. In: ICDM, pp. 997–1002 (2013)Google Scholar
  14. 14.
    Cruz, J.D., Bothorel, C., Poulet, F.: Integrating heterogeneous information within a social network for detecting communities. In: ASONAM, pp. 1453–1454 (2013)Google Scholar
  15. 15.
    Deng, H., Lyu, M.R., King, I.: A generalized Co-HITS algorithm and its application to bipartite graphs. In: KDD, pp. 239–248 (2009)Google Scholar
  16. 16.
    Deng, H., Zhao, B., Han, J.: Collective topic modeling for heterogeneous networks. In: SIGIR, pp. 1109–1110 (2011)Google Scholar
  17. 17.
    Deng, H., Han, J., Zhao, B., Yu, Y., Lin, C.X.: Probabilistic topic models with biased propagation on heterogeneous information networks. In: KDD, pp. 795–802 (2011)Google Scholar
  18. 18.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: a machine learning approach. Handbook on Ontologies, pp. 385–403. Springer, Berlin (2004)CrossRefGoogle Scholar
  19. 19.
    Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N.V., Rao, J., Cao, H.: Link prediction and recommendation across heterogeneous social networks. In: ICDM, pp. 181–190 (2012)Google Scholar
  20. 20.
    Fang, Y., Lin, W., Zheng, V.W., Wu, M., Chang, C.C., Li, X.L.: Semantic proximity search on graphs with metagraph-based learning. In: ICDE, pp. 277–288 (2016)Google Scholar
  21. 21.
    Gupta, M., Gao, J., Han, J.: Community distribution outlier detection in heterogeneous information networks. In: ECML, pp. 557–573 (2013)Google Scholar
  22. 22.
    Gupta, M., Gao, J., Yan, X., Cam, H., Han, J.: On detecting association-based clique outliers in heterogeneous information networks. In: ASONAM, pp. 108–115 (2013)Google Scholar
  23. 23.
    He, J., Bailey, J., Zhang, R.: Exploiting transitive similarity and temporal dynamics for similarity search in heterogeneous information networks. In: International Conference on Database Systems for Advanced Applications, pp. 141–155 (2014)Google Scholar
  24. 24.
    Hou U.L., Yao, K., Mak, H.: PathSimExt: revisiting PathSim in heterogeneous information networks. In: WAIM, pp. 38–42 (2014)Google Scholar
  25. 25.
    Hu, Q., Xie, S., Zhang, J., Zhu, Q., Guo, S., Yu, P.S.: HeteroSales: utilizing heterogeneous social networks to identify the next enterprise customer. In: WWW, pp. 41–50 (2016)Google Scholar
  26. 26.
    Huang, H., Zubiaga, A., Ji, H., Deng, H., Wang, D., Le, H.K., Abdelzaher, T.F., Han, J., Leung, A., Hancock, J.P., Others: Tweet ranking based on heterogeneous networks. In: COLING, pp. 1239–1256 (2012)Google Scholar
  27. 27.
    Huang, J., Nie, F., Huang, H., Tu, Y.C.: Trust prediction via aggregating heterogeneous social networks. In: CIKM, pp. 1774–1778 (2012)Google Scholar
  28. 28.
    Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: computing relevance in large heterogeneous information networks. In: SIGKDD, pp. 1595–1604 (2016)Google Scholar
  29. 29.
    Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for classifying in heterogeneous social networks. In: WSDM, pp. 373–382 (2014)Google Scholar
  30. 30.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  31. 31.
    Jamali, M., Lakshmanan, L.: HeteroMF: recommendation in heterogeneous information networks using context dependent factor models. In: WWW, pp. 643–654 (2013)Google Scholar
  32. 32.
    Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: KDD, pp. 538–543 (2002)Google Scholar
  33. 33.
    Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279 (2003)Google Scholar
  34. 34.
    Jendoubi, S., Martin, A., Lietard, L., Yaghlane, B.B.: Classification of message spreading in a heterogeneous social network. In: IPMU, pp. 66–75 (2014)Google Scholar
  35. 35.
    Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classification on heterogeneous information networks. In: ECML/PKDD, pp. 570–586 (2010)Google Scholar
  36. 36.
    Ji, M., Han, J., Danilevsky, M.: Ranking-based classification of heterogeneous information networks. In: KDD, pp. 1298–1306 (2011)Google Scholar
  37. 37.
    Jin, S., Zhang, J., Yu, P.S., Yang, S., Li, A.: Synergistic partitioning in multiple large scale social networks. In: IEEE BigData, pp. 281–290 (2014)Google Scholar
  38. 38.
    Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC Bioinform. 10(Suppl 1), S59 (2009)CrossRefGoogle Scholar
  39. 39.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: SODA, pp. 668–677 (1999)Google Scholar
  40. 40.
    Kong, X., Yu, P.S., Ding, Y., Wild, D.J.: Meta path-based collective classification in heterogeneous information networks. In: CIKM, pp. 1567–1571 (2012)Google Scholar
  41. 41.
    Kong, X., Cao, B., Yu, P.S.: Multi-label classification by mining label and instance correlations from heterogeneous information networks. In: KDD, pp. 614–622 (2013)Google Scholar
  42. 42.
    Kong, X., Zhang, J., Yu, P.S.: Inferring anchor links across multiple heterogeneous social networks. In: CIKM, pp. 179–188 (2013)Google Scholar
  43. 43.
    Koutra, D., Tong, H., Lubensky, D.: Big-align: fast bipartite graph alignment. In: ICDM, pp. 389–398 (2013)Google Scholar
  44. 44.
    Kuck, J., Zhuang, H., Yan, X., Cam, H., Han, J.: Query-based outlier detection in heterogeneous information networks. In: EDBT, pp. 325–336 (2015)Google Scholar
  45. 45.
    Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)Google Scholar
  46. 46.
    Lao, N., Cohen, W.: Fast query execution for retrieval models based on path constrained random walks. In: KDD, pp. 881–888 (2010)Google Scholar
  47. 47.
    Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(2), 53–67 (2010)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Li, C., Sun, J., Xiong, Y., Zheng, G.: An efficient drug-target interaction mining algorithm in heterogeneous biological networks. In: PAKDD, pp. 65–76 (2014)Google Scholar
  49. 49.
    Li, X., Ng, M.K., Ye, Y.: HAR: hub, authority and relevance scores in multi-relational data for query search. In: SDM, pp. 141–152 (2012)Google Scholar
  50. 50.
    Li, Y., Shi, C., Yu, P.S., Chen, Q.: HRank: a path based ranking method in heterogeneous information network. In: WAIM, pp. 553–565 (2014)Google Scholar
  51. 51.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Tech. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  52. 52.
    Liu, F., Xia, S.: Link prediction in aligned heterogeneous networks. In: PAKDD, pp. 33–44 (2015)Google Scholar
  53. 53.
    Liu, L., Tang, J., Han, J., Yang, S.: Learning influence from heterogeneous social networks. Data Min. Knowl. Discov. 25(3), 511–544 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Liu, X., Yu, Y., Guo, C., Sun, Y.: Meta-path-based ranking with pseudo relevance feedback on heterogeneous graph for citation recommendation. In: CIKM, pp. 121–130 (2014)Google Scholar
  55. 55.
    Lu, C.T., Xie, S., Shao, W., He, L., Yu, P.S.: Item recommendation for emerging online businesses. In: IJCAI, pp. 3797–3803 (2016)Google Scholar
  56. 56.
    Luo, C., Guan, R., Wang, Z., Lin, C.: HetPathMine: a novel transductive classification algorithm on heterogeneous information networks. In: Advances in Information Retrieval, vol. 8416, pp. 210–221 (2014)Google Scholar
  57. 57.
    Luo, C., Pang, W., Wang, Z.: Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations. In: ICDM, pp. 917–922 (2014)Google Scholar
  58. 58.
    Luo, C., Pang, W., Wang, Z.: Semi-supervised clustering on heterogeneous information networks. In: Advances in Knowledge Discovery and Data Mining, vol. 8444, pp. 548–559 (2014)Google Scholar
  59. 59.
    Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In: SIGIR, pp. 203–210 (2009)Google Scholar
  60. 60.
    Ma, Y., Yang, N., Li, C., Zhang, L., Yu, P.S.: Predicting neighbor distribution in heterogeneous information networks. In: SDM, pp. 784–791 (2015)Google Scholar
  61. 61.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: ICDE, pp. 117–128 (2002)Google Scholar
  62. 62.
    Meng, X., Shi, C., Li, Y., Zhang, L., Wu, B.: Relevance measure in large-scale heterogeneous networks. In: APWeb, pp. 636–643 (2014)Google Scholar
  63. 63.
    Newman, M.E.J., Girvan, M., M.E.J., Newman, M.G.: Finding and evaluating community structure in networks. Phys. Rev. E 69(026113), 1757–1771 (2004)Google Scholar
  64. 64.
    Ng, M.K., Li, X., Ye, Y., Ng, M., Li, X., Ye, Y.: MultiRank: co-ranking for objects and relations in multi-relational data. In: KDD, pp. 1217–1225 (2011)Google Scholar
  65. 65.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. In: Stanford InfoLab, pp. 1–14 (1998)Google Scholar
  66. 66.
    Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data, vol. 2003 (2003)Google Scholar
  67. 67.
    Qi, G.J., Aggarwal, C.C., Huang, T.S.: On clustering heterogeneous social media objects with outlier links. In: WSDM, pp. 553–562 (2012)Google Scholar
  68. 68.
    Qiu, C., Chen, W., Wang, T., Lei, K.: Overlapping community detection in directed heterogeneous social network. In: WAIM, pp. 490–493 (2015)Google Scholar
  69. 69.
    Ren, X., Liu, J., Yu, X., Khandelwal, U., Gu, Q., Wang, L., Han, J.: ClusCite: effective citation recommendation by information network-based clustering. In: KDD, pp. 821–830 (2014)Google Scholar
  70. 70.
    Rossi, R.G., de Paulo Faleiros, T., de Andrade Lopes, A., Rezende, S.O.: Inductive model generation for text categorization using a bipartite heterogeneous network. In: ICDM, pp. 1086–1091 (2012)Google Scholar
  71. 71.
    Sales-Pardo, M., Guimera, R., Moreira, A.A., Amaral, L.A.N.: Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. 104(39), 15224–15229 (2007)CrossRefGoogle Scholar
  72. 72.
    Shi, C., Kong, X., Yu, P.S., Xie, S., Wu, B.: Relevance search in heterogeneous networks. In: EDBT, pp. 180–191 (2012)Google Scholar
  73. 73.
    Shi, C., Zhou, C., Kong, X., Yu, P.S., Liu, G., Wang, B.: HeteRecom: a semantic-based recommendation system in heterogeneous networks. In: KDD, pp. 1552–1555 (2012)Google Scholar
  74. 74.
    Shi, C., Kong, X., Huang, Y., Philip, S.Y., Wu, B.: Hetesim: a general framework for relevance measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)CrossRefGoogle Scholar
  75. 75.
    Shi, C., Wang, R., Li, Y., Yu, P.S., Wu, B.: Ranking-based clustering on general heterogeneous information networks by network projection. In: CIKM, pp. 699–708 (2014)Google Scholar
  76. 76.
    Shi, C., Zhang, Z., Luo, P., Yu, P.S., Yue, Y., Wu, B.: Semantic path based personalized recommendation on weighted heterogeneous information networks. In: CIKM, pp. 453–462 (2015)Google Scholar
  77. 77.
    Shi, C., Li, Y., Philip, S.Y., Wu, B.: Constrained-meta-path-based ranking in heterogeneous information network. Knowl. Inf. Syst. 1–29 (2016)Google Scholar
  78. 78.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  79. 79.
    Shih, Y.K., Parthasarathy, S.: Scalable global alignment for multiple biological networks. BMC Bioinf. 13, 1–13 (2012)CrossRefGoogle Scholar
  80. 80.
    Soulier, L., Jabeur, L.B., Tamine, L., Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model. J. Am. Soc. Inf. Sci. Technol. 64(3), 500–515 (2013)CrossRefGoogle Scholar
  81. 81.
    Srebro, N., Jaakkola, T.: Weighted low-rank approximations. In: ICML, pp. 720–727 (2003)Google Scholar
  82. 82.
    Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 797–806 (2009)Google Scholar
  83. 83.
    Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: EDBT, pp. 565–576 (2009)Google Scholar
  84. 84.
    Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship prediction in heterogeneous bibliographic networks. In: ASONAM, pp. 121–128 (2011)Google Scholar
  85. 85.
    Sun, Y., Aggarwal, C., Han, J.: Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. In: VLDB, pp. 394–405 (2012)Google Scholar
  86. 86.
    Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen?: relationship prediction in heterogeneous information networks. In: WSDM, pp. 663–672 (2012)Google Scholar
  87. 87.
    Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. In: KDD, pp. 1348–1356 (2012)Google Scholar
  88. 88.
    Sun, Y.Z., Han, J.W., Yan, X.F., Yu, P.S., Wu, T.: PathSim: meta path-based Top-K similarity search in heterogeneous information networks. In: VLDB, pp. 992–1003 (2011)Google Scholar
  89. 89.
    Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: KDD, pp. 1165–1174 (2015)Google Scholar
  90. 90.
    Tang, J., Lou, T., Kleinberg, J., Wu, S.: Transfer learning to infer social ties across heterogeneous networks. ACM Trans. Inf. Syst. 34(2), 7:1–7:43 (2016)CrossRefGoogle Scholar
  91. 91.
    Tsai, M.H., Aggarwal, C., Huang, T.: Ranking in heterogeneous social media. In: WSDM, pp. 613–622 (2014)Google Scholar
  92. 92.
    Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)CrossRefzbMATHGoogle Scholar
  93. 93.
    Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. In: WWW, pp. 1275–1276 (2007)Google Scholar
  94. 94.
    Wan, M., Ouyang, Y., Kaplan, L., Han, J.: Graph regularized meta-path based transductive regression in heterogeneous information network. In: SDM, pp. 918–926 (2015)Google Scholar
  95. 95.
    Wang, B., Tang, J., Fan, W., Chen, S., Tan, C., Yang, Z.: Query-dependent cross-domain ranking in heterogeneous network. Knowl. Inf. Syst. 34(1), 109–145 (2013)CrossRefGoogle Scholar
  96. 96.
    Wang, C., Raina, R., Fong, D., Zhou, D., Han, J., Badros, G.J.: Learning relevance from heterogeneous social network and its application in online targeting. In: SIGIR, pp. 655–664 (2011)Google Scholar
  97. 97.
    Wang, C., Danilevsky, M., Liu, J., Desai, N., Ji, H., Han, J.: Constructing topical hierarchies in heterogeneous information networks. In: ICDM, pp. 767–776 (2013)Google Scholar
  98. 98.
    Wang, C., Song, Y., El-Kishky, A., Roth, D., Zhang, M., Han, J.: Incorporating world knowledge to document clustering via heterogeneous information networks. In: KDD, pp. 1215–1224 (2015)Google Scholar
  99. 99.
    Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Knowsim: a document similarity measure on structured heterogeneous information networks. In: ICDM, pp. 1015–1020 (2015)Google Scholar
  100. 100.
    Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Text classification with heterogeneous information network kernels. In: AAAI, pp. 2130–2136 (2016)Google Scholar
  101. 101.
    Wang, C., Sun, Y., Song, Y., Han, J., Song, Y., Wang, L., Zhang, M.: Relsim: relation similarity search in schema-rich heterogeneous information networks. In: Siam International Conference on Data Mining, pp. 621–629 (2016)Google Scholar
  102. 102.
    Wang, G., Hu, Q., Yu, P.S.: Influence and similarity on heterogeneous networks. In: CIKM, pp. 1462–1466 (2012)Google Scholar
  103. 103.
    Wang, Q., Peng, Z., Jiang, F., Li, Q.: LSA-PTM: a propagation-based topic model using latent semantic analysis on heterogeneous information networks. In: WAIM, pp. 13–24 (2013)Google Scholar
  104. 104.
    Wang, Q., Peng, Z., Wang, S., Yu, P.S., Li, Q., Hong, X.: cluTM: content and link integrated topic model on heterogeneous information networks. In: WAIM, pp. 207–218 (2015)Google Scholar
  105. 105.
    Wang, R., Shi, C., Yu, P.S., Wu, B.: Integrating clustering and ranking on hybrid heterogeneous information network. In: PAKDD, pp. 583–594 (2013)Google Scholar
  106. 106.
    Wang, S., Xie, S., Zhang, X., Li, Z., Yu, P.S., Shu, X.: Future influence ranking of scientific literature. In: SDM, pp. 749–757 (2014)Google Scholar
  107. 107.
    Wu, J., Chen, L., Yu, Q., Han, P., Wu, Z.: Trust-aware media recommendation in heterogeneous social networks. WWW 18(1), 139–157 (2015)CrossRefGoogle Scholar
  108. 108.
    Xiong, Y., Zhu, Y., Yu, P.S.: Top-k similarity join in heterogeneous information networks. IEEE Trans. Knowl. Data Eng. 27(6), 1710–1723 (2015)CrossRefGoogle Scholar
  109. 109.
    Yang, C., Sun, J., Ma, J., Zhang, S., Wang, G., Hua, Z.: Scientific collaborator recommendation in heterogeneous bibliographic networks. In: HICSS, pp. 552–561 (2015)Google Scholar
  110. 110.
    Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for community detection: a discriminative approach. In: KDD, pp. 927–936 (2009)Google Scholar
  111. 111.
    Yang, X., Steck, H., Liu, Y.: Circle-based recommendation in online social networks. In: KDD, pp. 1267–1275 (2012)Google Scholar
  112. 112.
    Yang, Y., Chawla, N.V., Sun, Y., Han, J.: Predicting links in multi-relational and heterogeneous networks. In: ICDM, pp. 755–764 (2012)Google Scholar
  113. 113.
    Yang, Y., Tang, J., Keomany, J., Zhao, Y., Li, J., Ding, Y., Li, T., Wang, L.: Mining competitive relationships by learning across heterogeneous networks. In: CIKM, pp. 1432–1441 (2012)Google Scholar
  114. 114.
    Yu, P.S., Zhang, J.: MCD: mutual clustering across multiple social networks. In: IEEE International Congress on Big Data, pp. 762–771 (2015)Google Scholar
  115. 115.
    Yu, X., Gu, Q., Zhou, M., Han, J.: Citation prediction in heterogeneous bibliographic networks. In: SDM, pp. 1119–1130 (2012)Google Scholar
  116. 116.
    Yu, X., Sun, Y., Norick, B., Mao, T., Han, J.: User guided entity similarity search using meta-path selection in heterogeneous information networks. In: CIKM, pp. 2025–2029 (2012)Google Scholar
  117. 117.
    Yu, X., Ren, X., Sun, Y., Sturt, B., Khandelwal, U., Gu, Q., Norick, B., Han, J.: Recommendation in heterogeneous information networks with implicit user feedback. In: RecSys, pp. 347–350 (2013)Google Scholar
  118. 118.
    Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han, J.: Personalized entity recommendation: a heterogeneous information network approach. In: WSDM, pp. 283–292 (2014)Google Scholar
  119. 119.
    Zhan, Q., Zhang, J., Wang, S., Yu, P.S., Xie, J.: Influence maximization across partially aligned heterogeneous social networks. In: PAKDD, pp. 58–69 (2015)Google Scholar
  120. 120.
    Zhan, Q., Zhang, J., Philip, S.Y., Emery, S., Xie, J.: Discover tipping users for cross network influencing. In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 67–76 (2016)Google Scholar
  121. 121.
    Zhang, A., Xie, X., Chang, K.C.C., Gunter, C.A., Han, J., Wang, X.: Privacy risk in anonymized heterogeneous information networks. In: EDBT, pp. 595–606 (2014)Google Scholar
  122. 122.
    Zhang, J., Yu, P.: Community detection for emerging networks. In: SDM, pp. 127–135 (2015)Google Scholar
  123. 123.
    Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across social networks. In: IJCAI, pp. 2125–2131 (2015)Google Scholar
  124. 124.
    Zhang, J., Yu, P.S.: Multiple anonymized social networks alignment. In: ICDM, pp. 599–608 (2015)Google Scholar
  125. 125.
    Zhang, J., Yu, P.S.: PCT: partial co-alignment of social networks. In: WWW, pp. 749–759 (2016)Google Scholar
  126. 126.
    Zhang, J., Kong, X., Yu, P.S.: Predicting social links for new users across aligned heterogeneous social networks. In: ICDM, pp. 1289–1294 (2013)Google Scholar
  127. 127.
    Zhang, J., Yu, P.S., Zhou, Z.H.: Meta-path based multi-network collective link prediction. In: KDD, pp. 1286–1295 (2014)Google Scholar
  128. 128.
    Zhang, J., Kong, X., Yu, P.S.: Transferring heterogeneous links across location-based social networks. In: WSDM, pp. 303–312 (2014)Google Scholar
  129. 129.
    Zhang, J., Kong, X., Jie, L., Chang, Y., Yu, P.S.: NCR: a scalable network-based approach to co-ranking in question-and-answer sites. In: CIKM, pp. 709–718 (2014)Google Scholar
  130. 130.
    Zhang, J., Yu, P.S., Lv, Y.: Organizational chart inference. In: KDD, pp. 1435–1444 (2015)Google Scholar
  131. 131.
    Zhang, J., Shao, W., Wang, S., Kong, X., Yu, P.S.: Partial network alignment with anchor meta path and truncated generic stable matching. ArXiv e-prints (2015)Google Scholar
  132. 132.
    Zhang, J., Yu, P.S., Lv, Y., Zhan, Q.: Information diffusion at workplace. In: CIKM, pp. 1673–1682. ACM (2016)Google Scholar
  133. 133.
    Zhang, M., Hu, H., He, Z., Wang, W.: Top-k similarity search in heterogeneous information networks with x-star network schema. Expert Syst. Appl. 42(2), 699–712 (2015)CrossRefGoogle Scholar
  134. 134.
    Zhang, Y., Tang, J., Yang, Z., Pei, J., Yu, P.S.: COSNET: connecting heterogeneous social networks with local and global consistency. In: KDD, pp. 1485–1494 (2015)Google Scholar
  135. 135.
    Zhao, Q., Bhowmick, S.S., Zheng, X., Yi, K.: Characterizing and predicting community members from evolutionary and heterogeneous networks. In: CIKM, pp. 309–318 (2008)Google Scholar
  136. 136.
    Zheng, J., Liu, J., Shi, C., Zhuang, F., Li, J., Wu, B.: Dual similarity regularization for recommendation. In: PAKDD, pp. 542–554 (2016)Google Scholar
  137. 137.
    Zhou, D., Orshanskiy, S.A., Zha, H., Giles, C.L.: Co-ranking authors and documents in a heterogeneous network. In: ICDM, pp. 739–744 (2007)Google Scholar
  138. 138.
    Zhou, Y., Liu, L.: Social influence based clustering of heterogeneous information networks. In: KDD, pp. 338–346 (2013)Google Scholar
  139. 139.
    Zhou, Y., Liu, L.: Activity-edge centric multi-label classification for mining heterogeneous information networks. In: KDD, pp. 1276–1285 (2014)Google Scholar
  140. 140.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. In: VLDB, pp. 718–729 (2009)Google Scholar
  141. 141.
    Zhu, M., Zhu, T., Peng, Z., Yang, G., Xu, Y., Wang, S., Wang, X., Hong, X.: Relevance search on signed heterogeneous information network based on meta-path factorization. In: WAIM, pp. 181–192 (2015)Google Scholar
  142. 142.
    Zhuang, H., Zhang, J., Brova, G., Tang, J., Cam, H., Yan, X., Han, J.: Mining query-Based subnetwork outliers in heterogeneous information networks. In: ICDM, pp. 1127–1132 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina
  2. 2.University of Illinois at ChicagoChicagoUSA

Personalised recommendations