Intracerebral Hemorrhage and Cerebral Amyloid Angiopathy

  • Alessandro Biffi
  • Jonathan Rosand


Intracerebral hemorrhage (ICH) is the acute manifestation of a chronic progressive disease of the cerebral vessels [1]. Rarely, the underlying vessel disease can be a vascular malformation. However, for patients over the age of 55 years, the overwhelming majority of ICH cases occur in the presence of cerebral small vessel disease [2]. ICH is routinely classified according to the region of the brain in which it occurs: the thalamus, basal ganglia, brainstem, cerebellum (“deep” or “nonlobar” ICH), or at the junction of the cortical gray matter and subcortical white matter (“lobar” ICH). Pathological studies demonstrate that ICH location frequently correlates with different underlying small vessel diseases. For example, while chronic hypertension has long been recognized as the leading cause of deep ICH, cerebral amyloid angiopathy (CAA) has been recognized as a leading cause of lobar (ICH) [3–7].


Amyloid Precursor Protein Cerebral Amyloid Angiopathy Cerebral Small Vessel Disease Autosomal Dominant Inheritance Pattern Genome Wide Association Study Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.CrossRefPubMedGoogle Scholar
  3. 3.
    Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke. 1983;14(6):924–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke. 1987;18(2):311–24.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang-Nunes SX, Maat-Schieman ML, van Duinen SG, Roos RA, Frosch MP, Greenberg SM. The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol. 2006;16(1):30–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Woo D, Broderick JP. Spontaneous intracerebral hemorrhage: epidemiology and clinical presentation. Neurosurg Clin N Am. 2002;13(3):265–79. vCrossRefPubMedGoogle Scholar
  7. 7.
    Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol. 2011;7(1):1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Poon MT, Fonville AF, Al-Shahi SR. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–7.CrossRefPubMedGoogle Scholar
  9. 9.
    van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.CrossRefPubMedGoogle Scholar
  10. 10.
    Hemphill 3rd JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Steiner T, Al-Shahi Salman R, Beer R, Christensen H, Cordonnier C, Csiba L, et al. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int J Stroke. 2014;9(7):840–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Biffi A, Anderson C, Battey TW, Ayres A, Greenberg SM, Viswanathan A, et al. Association between Blood Pressure Control and Risk of Recurrent Intracerebral Hemorrhage. JAMA. 2015;9(314):904–12.CrossRefGoogle Scholar
  13. 13.
    Rost NS, Greenberg SM, Rosand J. The genetic architecture of intracerebral hemorrhage. Stroke. 2008;39(7):2166–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Alberts MJ, McCarron MO, Hoffmann KL, Graffagnino C. Familial clustering of intracerebral hemorrhage: a prospective study in North Carolina. Neuroepidemiology. 2002;21(1):18–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Sundquist K, Li X, Hemminki K. Familial risk of ischemic and hemorrhagic stroke: a large-scale study of the Swedish population. Stroke. 2006;37(7):1668–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294–305.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Devan WJ, Falcone GJ, Anderson CD, Jagiella JM, Schmidt H, Hansen BM, et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke. 2013;44(6):1578–83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Woo D, Falcone GJ, Devan WJ, Brown WM, Biffi A, Howard TD, et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet. 2014;94(4):511–21.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jellinger KA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm (Vienna). 2002;109(5-6):813–36.CrossRefGoogle Scholar
  21. 21.
    Greenberg SM, Vonsattel JP. Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke. 1997;28(7):1418–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357(9251):169–75.CrossRefGoogle Scholar
  23. 23.
    Palsdottir A, Snorradottir AO, Thorsteinsson L. Hereditary cystatin C amyloid angiopathy: genetic, clinical, and pathological aspects. Brain Pathol. 2006;16(1):55–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Bornebroek M, Haan J, Backhovens H, Deutz P, van Buchem MA, van den Broeck M, et al. Presenilin-1 polymorphism and hereditary cerebral hemorrhage with amyloidosis, Dutch type. Ann Neurol. 1997;42(1):108–10.CrossRefPubMedGoogle Scholar
  25. 25.
    De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L, et al. Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis. 1998;5(4):281–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Farzan M, Schnitzler CE, Vasilieva N, Leung D, Choe H. BACE2, a beta-secretase homolog, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein. Proc Natl Acad Sci U S A. 2000;97(17):9712–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haass C, Hung AY, Selkoe DJ, Teplow DB. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem. 1994;269(26):17741–8.PubMedGoogle Scholar
  28. 28.
    Stenh C, Nilsberth C, Hammarback J, Engvall B, Naslund J, Lannfelt L. The Arctic mutation interferes with processing of the amyloid precursor protein. Neuroreport. 2002;13(15):1857–60.CrossRefPubMedGoogle Scholar
  29. 29.
    Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW. Pathogenic effects of D23N Iowa mutant amyloid beta-protein. J Biol Chem. 2001;276(35):32860–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology. 2001;56(4):537–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Sudlow C, Martinez Gonzalez NA, Kim J, Clark C. Does apolipoprotein E genotype influence the risk of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage? Systematic review and meta-analyses of 31 studies among 5961 cases and 17,965 controls. Stroke. 2006;37(2):364–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Peck G, Smeeth L, Whittaker J, Casas JP, Hingorani A, Sharma P. The genetics of primary haemorrhagic stroke, subarachnoid haemorrhage and ruptured intracranial aneurysms in adults. PLoS One. 2008;3(11):e3691.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Garcia C, Pinho e Melo T, Rocha L, Lechner MC. Cerebral hemorrhage and apoE. J Neurol. 1999;246(9):830–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Seifert T, Lechner A, Flooh E, Schmidt H, Schmidt R, Fazekas F. Lack of association of lobar intracerebral hemorrhage with apolipoprotein E genotype in an unselected population. Cerebrovasc Dis. 2006;21(4):266–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Biffi A, Sonni A, Anderson CD, Kissela B, Jagiella JM, Schmidt H, et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol. 2010;68(6):934–43.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Biffi A, Anderson CD, Jagiella JM, Schmidt H, Kissela B, Hansen BM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011;10(8):702–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Brouwers HB, Biffi A, Ayres AM, Schwab K, Cortellini L, Romero JM, et al. Apolipoprotein E genotype predicts hematoma expansion in lobar intracerebral hemorrhage. Stroke. 2012;43(6):1490–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McCarron MO, Nicoll JA. Apolipoprotein E genotype and cerebral amyloid angiopathy-related hemorrhage. Ann N Y Acad Sci. 2000;903:176–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Greenberg SM, Vonsattel JP, Segal AZ, Chiu RI, Clatworthy AE, Liao A, et al. Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology. 1998;50(4):961–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Biffi A, Plourde A, Shen Y, Onofrio R, Smith EE, Frosch M, et al. Screening for familial APP mutations in sporadic cerebral amyloid angiopathy. PLoS One. 2010;5(11):e13949.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Domingues-Montanari S, Pares M, Hernandez-Guillamon M, Fernandez-Cadenas I, Mendioroz M, Ortega G, et al. No evidence of APP point mutation and locus duplication in individuals with cerebral amyloid angiopathy. Eur J Neurol. 2011;18(10):1279–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, et al. Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010;19(16):3295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chibnik LB, Shulman JM, Leurgans SE, Schneider JA, Wilson RS, Tran D, et al. CR1 is associated with amyloid plaque burden and age-related cognitive decline. Ann Neurol. 2011;69(3):560–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Biffi A, Shulman JM, Jagiella JM, Cortellini L, Ayres AM, Schwab K, et al. Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology. 2012;78(5):334–41.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Valant V, Keenan B, Anderson C, Shulman J, Devan W, Ayres A, et al. TOMM40 in cerebral amyloid angiopathy related intracerebral hemorrhage: comparative genetic analysis with Alzheimer’s Disease. Transl Stroke Res. 2012;30:102–12.CrossRefGoogle Scholar
  48. 48.
    Hamaguchi T, Okino S, Sodeyama N, Itoh Y, Takahashi A, Otomo E, et al. Association of a polymorphism of the transforming growth factor-{beta}1 gene with cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry. 2005;76(5):696–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Peila R, Yucesoy B, White LR, Johnson V, Kashon ML, Wu K, et al. A TGF-beta1 polymorphism association with dementia and neuropathologies: the HAAS. Neurobiol Aging. 2007;28(9):1367–73.CrossRefPubMedGoogle Scholar
  50. 50.
    Volonghi I, Pezzini A, Del Zotto E, Giossi A, Costa P, Ferrari D, et al. Role of COL4A1 in basement-membrane integrity and cerebral small-vessel disease. The COL4A1 stroke syndrome. Curr Med Chem. 2010;17(13):1317–24.CrossRefPubMedGoogle Scholar
  51. 51.
    Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke [see comment]. N Engl J Med. 2006;354(14):1489–96.CrossRefPubMedGoogle Scholar
  52. 52.
    Weng YC, Sonni A, Labelle-Dumais C, de Leau M, Kauffman WB, Jeanne M, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol. 2012;71(4):470–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90(1):91–101.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rannikmae K, Davies G, Thomson PA, Bevan S, Devan WJ, Falcone GJ, et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology. 2015;84(9):918–26.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69(6):928–39.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Verhaaren BF, Debette S, Bis JC, Smith JA, Ikram MK, Adams HH, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet. 2015;8(2):398–409.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Raffeld MR, Biffi A, Battey TW, Ayres AM, Viswanathan A, Greenberg SM, et al. APOE epsilon4 and lipid levels affect risk of recurrent nonlobar intracerebral hemorrhage. Neurology. 2015;85(4):349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gusella JF, MacDonald ME. Expanding the notion of disease in Huntington's disease. Biol Psychiatry. 2007;62(12):1340.CrossRefPubMedGoogle Scholar
  59. 59.
    Genetic Modifiers of Huntington's Disease C. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell. 2015;162(3):516–26.CrossRefGoogle Scholar
  60. 60.
    Lotery A, Trump D. Progress in defining the molecular biology of age related macular degeneration. Hum Genet. 2007;122(3-4):219–36.CrossRefPubMedGoogle Scholar
  61. 61.
    Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Eckman MH, Wong LK, Soo YO, Lam W, Yang SR, Greenberg SM, et al. Patient-specific decision-making for warfarin therapy in nonvalvular atrial fibrillation: how will screening with genetics and imaging help? Stroke. 2008;39(12):3308–15.CrossRefPubMedGoogle Scholar
  63. 63.
    Kathiresan S. Developing medicines that mimic the natural successes of the human genome: lessons from NPC1L1, HMGCR, PCSK9, APOC3, and CETP. J Am Coll Cardiol. 2015;65(15):1562–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of NeurologyMassachusetts General HospitalBostonUSA
  2. 2.Center for Human Genetics ResearchMassachusetts General HospitalBostonUSA
  3. 3.Program in Medical and Population GeneticsBroad Institute of Harvard and MITCambridgeUSA
  4. 4.Division of Neurocritical Care and Emergency NeurologyMassachusetts General Hospital (MGH)BostonUSA

Personalised recommendations