Advertisement

Strategies for Learning from Animation With and Without Narration

  • Rolf Ploetzner
  • Bianka Breyer
Chapter

Abstract

While there has been extensive research on strategies for learning from text, the same cannot be stated for animations. Two important types of animation are distinguished: those that do not include verbal information and those that do include verbal information. According to the modality principle, verbal information in animations should be presented in spoken as opposed to written form, thus yielding narrated animations. Because animations without and without narration place different processing demands on the students respectively, different theories account for learning from each type. Both types of animation require the students to engage in perceptual and cognitive interrogations in order to identify events and the relational structures between them that characterize the animated processes locally as well as globally. The Animation Processing Model gives an account of how these interrogation processes can be realized. Narrated animations require the students to process not only the pictorial display as well as the narration, they also have to mentally relate and integrate both sources of information. The Cognitive Theory of Multimedia Learning provides an account of how the integration of both sources of information in particular can be achieved. A learning strategy was developed and empirically evaluated on the basis of each theory. In four experimental studies overall, it was demonstrated that the strategy for learning from narrated animation substantially improves learning. The beneficial effects of the learning strategy were still observable 1 week after the learning period. The strategy for learning from animation without narration, in contrast, did not significantly enhance learning. It turned out that particularly the students’ perceptual interrogation processes are difficult to support by means of a learning strategy.

Keywords

Learning Strategy Perceptual Process Strategy Group Verbal Information Learning Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft under contract PL 224/17-1. We thank Benjamin Fillisch and Patrick Gewald for supporting the data collection.

References

  1. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.CrossRefGoogle Scholar
  2. Ainsworth, S., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.CrossRefGoogle Scholar
  3. Artelt, C. (2000). Strategisches Lernen [Strategic learning]. Münster: Waxmann Verlag.Google Scholar
  4. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). New York: Academic Press.Google Scholar
  5. Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 206–226). New York: Cambridge University Press.CrossRefGoogle Scholar
  6. Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.Google Scholar
  7. Baddeley, A. D. (1999). Essentials of human memory. Hove: Psychology Press.Google Scholar
  8. Bark, A. (2009). Sportküstenschifferschein [License for coastal sport skippers] (9 Aufl.). Bielefeld: Delius Klasing Verlag.Google Scholar
  9. Boucheix, J.-M., Lowe, R., Putri, D. K., & Groff, J. (2013). Cueing animations: Dynamic signaling aids information extraction and comprehension. Learning and Instruction, 25, 71–84.CrossRefGoogle Scholar
  10. Clark, R. E. (1990). When teaching kills learning: Studies of mathematantics. In H. Mandl, E. de Corte, N. S. Bennet, & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context (pp. 1–22). Oxford: Pergamon Press.Google Scholar
  11. Clark, R. C., & Mayer, R. E. (2011). E-learning and the science of instruction (3rd ed.). San Francisco, CA: Pfeiffer.CrossRefGoogle Scholar
  12. Dansereau, D. F., Collins, K. W., McDonald, B. A., Holley, C. D., Garland, J. C., Diekhoff, G., & Evans, S. H. (1979). Development and evaluation of a learning strategy training program. Journal of Educational Psychology, 71, 64–73.CrossRefGoogle Scholar
  13. De Koning, B. B., & Jarodzka, H. (2017). Attention guidance strategies for supporting learning from dynamic visualizations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).Google Scholar
  14. De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. G. W. C. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113–140.CrossRefGoogle Scholar
  15. De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. G. W. C. (2010). Learning by generating vs. receiving instructional explanations: Two approaches to enhance attention cueing in animations. Computers & Education, 55, 681–691.CrossRefGoogle Scholar
  16. Dornisch, M., Sperling, R. A., & Zeruth, J. A. (2011). The effects of levels of elaboration on learners’ strategic processing of text. Instructional Science, 39, 1–26.CrossRefGoogle Scholar
  17. Friedrich, H. F. (1995). Training und transfer reduktiver-organisierender Strategien für das Lernen mit Texten [Training and transfer of reductive and organizational strategies for learning from texts]. Münster: Aschendorff.Google Scholar
  18. Gambrell, L. B., Morrow, L. M., & Pressley, M. (2007). Best practices in literacy instruction (3rd ed.). New York: Guilford Press.Google Scholar
  19. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.CrossRefGoogle Scholar
  20. Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21, 325–360.CrossRefGoogle Scholar
  21. Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction – Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.Google Scholar
  22. Jonassen, D. H., Howland, J., Marra, R. M., & Crismond, D. (2011). Meaningful learning with technology (4th ed.). Upper Saddle River, NJ: Pearson.Google Scholar
  23. Klauer, K. J., & Phye, G. D. (2008). Inductive reasoning: A training approach. Review of Educational Research, 78, 85–123.CrossRefGoogle Scholar
  24. Kombartzky, U., Ploetzner, R., Schlag, S., & Metz, B. (2010). Developing and evaluating a strategy for learning from animation. Learning and Instruction, 20, 424–433.CrossRefGoogle Scholar
  25. Kremling, C. (2008). “Lehren und Lernen mit Bildern” – Erste Ergebnisse der Eingangserhebung des Forschungsprojektes “Bildliteralität und ästhetische Alphabetisierung” [“Teaching and learning with pictures” – First results of a survey within the research project “picture literacy and aesthetical alphabetization”]. In G. Lieber (Hg.), Lehren und Lernen mit Bildern [Teaching and learning with pictures] (S. 115–123). Hohengehren: Schneider Verlag.Google Scholar
  26. Krug, S. (2014). Don’t make me think –A common sense approach to web and mobile usability (3rd ed.). Berkeley, CA: New Riders.Google Scholar
  27. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.CrossRefGoogle Scholar
  28. Larson, C. O., Dansereau, D. F., Hythecker, V. I., O’Donnell, A., Young, M. D., Lambiotte, J. G., & Rocklin, T. R. (1986). Technical training: An application of a strategy for learning structural and functional information. Contemporary Educational Psychology, 11, 217–228.CrossRefGoogle Scholar
  29. Lieber, G. (Hg.). (2008). Lehren und Lernen mit Bildern [Teaching and learning with pictures]. Hohengehren: Schneider Verlag.Google Scholar
  30. Linn, M., & Eylon, B.-S. (2011). Science learning and instruction: Taking advantage of technology to promote knowledge integration. New York: Routledge.Google Scholar
  31. Low, R., & Sweller, J. (2014). The modality principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 227–246). New York: Cambridge University Press.CrossRefGoogle Scholar
  32. Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.CrossRefGoogle Scholar
  33. Lowe, R. K. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14, 257–274.CrossRefGoogle Scholar
  34. Lowe, R. K. (2008). Learning from animation: Where to look, when to look. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation – Research implications for design (pp. 49–68). New York: Cambridge University Press.Google Scholar
  35. Lowe, R., & Boucheix, J.-M. (2008). Learning from animated diagrams: How are mental models built? In G. Stapleton, J. Howse, & J. Lee (Eds.), Diagrammatic representations and inference – Proceedings of the fifth international conference, diagrams 2008 (pp. 266–281). Berlin: Springer.Google Scholar
  36. Lowe, R., & Boucheix, J.-M. (2011). Cueing complex animations: Does direction of attention foster learning processes? Learning and Instruction, 21, 650–663.CrossRefGoogle Scholar
  37. Lowe, R., & Boucheix, J.-M. (2012). Dynamic diagrams: A composition alternative. In P. T. Cox, B. Plimmer, & P. Rodgers (Eds.), Diagrammatic representations and inference – Lecture notes in computer science (Vol. 7352, pp. 233–240). Berlin: Springer.CrossRefGoogle Scholar
  38. Lowe, R., & Boucheix, J.-M. (2017). A composition approach to design of educational animations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).Google Scholar
  39. Lowe, R., & Mason, L. (2017). Self-generated drawing: A help or hindrance to learning from animation? In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).Google Scholar
  40. Lowe, R. K., & Schnotz, W. (2014). Animation principles in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 513–546). New York: Cambridge University Press.CrossRefGoogle Scholar
  41. Mandl, H., & Friedrich, H. F. (Hrsg.). (2006). Handbuch Lernstrategien [Handbook learning strategies]. Göttingen: Hogrefe Verlag.Google Scholar
  42. Marton, F., & Säljö, R. (1984). Approaches to learning. In F. Marton, D. J. Hounsell, & N. Entwistle (Eds.), The experience of learning (pp. 39–58). Edinburgh: Scottish Academic Press.Google Scholar
  43. Mason, L., Lowe, R., & Tornatora, M. C. (2013). Self-generated drawings for supporting comprehension of a complex animation. Contemporary Educational Psychology, 38, 211–224.CrossRefGoogle Scholar
  44. Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  45. Mayer, R. E. (Ed.). (2014a). The Cambridge handbook of multimedia learning (2nd ed.). New York: Cambridge University Press.Google Scholar
  46. Mayer, R. E. (2014b). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). New York: Cambridge University Press.CrossRefGoogle Scholar
  47. McKeachie, W. J. (1995). Learning styles can become learning strategies. The National Teaching and Learning Forum, 4, 1–3.CrossRefGoogle Scholar
  48. Metz, B., & Wichert, A. (2009). Lernen mit illustrierten Texten [Learning with illustrated texts]. In R. Ploetzner, T. Leuders, & A. Wichert (Hrsg.), Lernchance ComputerStrategien für das Lernen mit digitalen Medienverbünden [The computer as a learning opportunity – Strategies for learning with digital media] (S. 141–161). Münster: Waxmann Verlag.Google Scholar
  49. Microsoft Corporation. (2002). Microsoft ® Encarta ® professional [software]. Redmond, WA: Microsoft Corporation.Google Scholar
  50. Moreno, R., & Valdez, A. (2005). Cognitive load and learning effects of having students organize pictures and words in multimedia environments: The role of student interactivity and feedback. Educational Technology Research and Development, 53, 35–45.CrossRefGoogle Scholar
  51. Oestermeier, U., & Hesse, F. W. (2000). Verbal and visual causal arguments. Cognition, 75, 65–104.CrossRefGoogle Scholar
  52. Paivio, A. (1986). Mental representations: A dual-coding approach. New York: Oxford University Press.Google Scholar
  53. Pask, G. (1976). Styles and strategies of learning. British Journal of Educational Psychology, 46, 128–148.CrossRefGoogle Scholar
  54. Peeck, J. (1994). Wissenserwerb mit darstellenden Bildern [Knowledge acquisition with representative pictures]. In B. Weidenmann (Hg.), Wissenserwerb mit Bildern [Knowledge acquisition with pictures] (S. 59–94). Bern: Huber Verlag.Google Scholar
  55. Ploetzner, R. (2016). Understanding explanatory animation – An introduction to cognitive design and user support. Freiburg: eXplanatory!media.Google Scholar
  56. Ploetzner, R., & Lowe, R. (2012). A systematic characterisation of expository animations. Computers in Human Behavior, 28, 781–794.CrossRefGoogle Scholar
  57. Ploetzner, R., & Lowe, R. (2014). Simultaneously presented animations facilitate the learning of higher-order relationships. Computers in Human Behavior, 34, 12–22.CrossRefGoogle Scholar
  58. Ploetzner, R., & Lowe, R. (2017). Looking across instead of back and forth – How the simultaneous presentation of multiple animation episodes facilitates learning. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).Google Scholar
  59. Ploetzner, R., Lowe, R., & Schlag, S. (2013). A systematic characterization of cognitive techniques for learning from textual and pictorial representations. Journal of Education and Learning, 2, 78–95.CrossRefGoogle Scholar
  60. Ploetzner, R., Lowe, R., Schlag, S., & Hauß, C. (2012). Lernen mit statischen und dynamischen Bildern – Welche kognitiven Techniken kennen Lehramtsstudierende? [Learning from static and dynamic pictures – Which cognitive techniques are known by pre-service teachers?] In I. Oomen-Welke & M. Staiger (Hrsg.), Bilder in Medien, Kunst, Literatur, Sprache, Didaktik [Pictures in media, art, literature, language, pedagogy] (S. 249–259). Freiburg: Fillibach Verlag.Google Scholar
  61. Ploetzner, R., & Schlag, S. (2013). Strategic learning from expository animations: Short- and mid-term effects. Computers & Education, 69, 159–168.CrossRefGoogle Scholar
  62. Prain, V., & Tytler, R. (2013). Learning through the affordances of representation construction. In R. Tytler, V. Prain, P. Hubber, & B. Waldrip (Eds.), Constructing representations to learn in science (pp. 67–82). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  63. Pressley, M., & Harris, K. R. (2006). Cognitive strategies instruction: From basic research to classroom instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 265–286). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  64. Robinson, F. P. (1946). Effective study. New York: Harper and Row.Google Scholar
  65. Salomon, G. (1983). The differential investment of mental effort in learning from different sources. Educational Psychologist, 18, 42–50.CrossRefGoogle Scholar
  66. Salomon, G. (1984). Television is easy and print is tough – The differential investment of mental effort in learning as a function of perceptions and attributions. Journal of Educational Psychology, 76, 647–658.CrossRefGoogle Scholar
  67. Schlag, S., & Ploetzner, R. (2009). Lernen mit informierenden Bildern in Texten [Learning with informational pictures in texts]. In R. Ploetzner, T. Leuders & A. Wichert (Hrsg.), Lernchance computer – Strategien für das Lernen mit digitalen Medienverbünden [The computer as a learning opportunity – Strategies for learning with digital media] (S. 123–140). Münster: Waxmann Verlag.Google Scholar
  68. Schlag, S., & Ploetzner, R. (2011). Supporting learning from illustrated texts: Conceptualizing and evaluating a learning strategy. Instructional Science, 39, 921–937.CrossRefGoogle Scholar
  69. Schmidt-Weigand, F. (2005). Dynamic visualizations in multimedia learning: The influence of verbal explanations on visual attention, cognitive load and learning outcome (PhD Thesis). Institut für Psychologie der Universität Gießen, Gießen.Google Scholar
  70. Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14, 101–120.CrossRefGoogle Scholar
  71. Schnotz, W., & Lowe, R. K. (2008). A unified view of learning from animated and static graphics. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 304–356). New York: Cambridge University Press.Google Scholar
  72. Seufert, T. (2009). Lernen mit multiplen Repräsentationen – Gestaltungs- und Verarbeitungsstrategien [Learning with multiple representations – Strategies for design and processing]. In R. Ploetzner, T. Leuders, & A. Wichert (Hrsg.), Lernchance ComputerStrategien für das Lernen mit digitalen Medienverbünden [The computer as a learning opportunity – Strategies for learning with digital media] (S. 45–66). Münster: Waxmann Verlag.Google Scholar
  73. Stalbovs, K., Scheiter, K., & Gerjets, P. (2015). Implementation intentions during multimedia learning: Using if-then plans to facilitate cognitive processing. Learning and Instruction, 35, 1–15.CrossRefGoogle Scholar
  74. Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science, 19, 97–140.CrossRefGoogle Scholar
  75. Stieff, M. (2017). Drawing for promoting learning and engagement with dynamic visualizations. In R. Lowe, & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).Google Scholar
  76. Streblow, L., & Schiefele, U. (2006). Lernstrategien im Studium [Learning strategies in academic studying]. In H. Mandl & H. F. Friedrich (Hrsg.), Handbuch Lernstrategien [Handbook learning strategies] (S. 352–364). Göttingen: Hogrefe Verlag.Google Scholar
  77. Svensson, L. (1977). On qualitative differences in learning. III: Study skill and learning. British Journal of Educational Psychology, 47, 233–243.CrossRefGoogle Scholar
  78. Thomas, E. L., & Robinson, H. A. (1972). Improving reading in every class: A source-book for teachers. Boston, MA: Allyn and Bacon.Google Scholar
  79. Weidenmann, B. (1988). Psychische Prozesse beim Verstehen von Bildern [Psychological processes of picture comprehension]. Bern: Huber Verlag.Google Scholar
  80. Weidenmann, B. (1989). When good pictures fail: An information processing approach to the effect of illustration. In H. Mandl & J. R. Levin (Eds.), Knowledge acquisition from text and pictures (pp. 157–170). Amsterdam: North-Holland.CrossRefGoogle Scholar
  81. Weidenmann, B. (1994). Informierende Bilder [Informational pictures]. In B. Weidenmann (Hg.), Wissenserwerb mit Bildern [Knowledge acquisition with pictures] (S. 9–58). Bern: Huber Verlag.Google Scholar
  82. Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 315–327). New York: MacMillan Publishers.Google Scholar
  83. Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  84. Wittrock, M. C. (1974). Learning as a generative process. Educational Psychologist, 11, 87–95.CrossRefGoogle Scholar
  85. Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24, 345–376.CrossRefGoogle Scholar
  86. Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41, 64–70.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Education at FreiburgFreiburgGermany
  2. 2.Leibniz Institute for the Social SciencesMannheimGermany

Personalised recommendations