Wood Availability

  • Mart-Jan SchelhaasEmail author
  • Marian Lajos Mayr
Part of the Managing Forest Ecosystems book series (MAFE, volume 29)


Estimation of the amount of wood that could potentially be harvested in a country can be accomplished using several approaches. A simple indicator is the balance between annual fellings and Net Annual Increment. However, this indicator does not take into account the actual age-class distribution of the forest and possible harvesting constraints. More elaborate systems can estimate Annual Allowable Cut or long-term maximum supply based on the actual age-class distribution, management guidelines and existing policies. For most approaches, the maximum theoretical (physical) potential is reduced to a “realistic” potential by applying technical, ecological and economic constraints. These inventory-based estimates of potentials can then be translated to quantities available to consumers on the market, taking into account differences in measurement methods between NFIs and wood market analysts, losses during felling, forwarding and transport, and correcting for unregistered fellings.


  1. Alberdi I, Michalak R, Fischer C et al (2016) Towards harmonized assessment of European forest availability for wood supply in Europe. For Policy Econ 70:20–29. doi: 10.1016/j.forpol.2016.05.014 CrossRefGoogle Scholar
  2. Hetsch S (2009) Potential sustainable wood supply in Europe, Geneva timber and forest discussion paper, vol 52, United Nations Economic Commission for Europe, Food and Agriculture Organization of the United Nations, GenevaGoogle Scholar
  3. Hofer P, Altwegg J, Schoop A et al (2011) Holznutzungspotenziale im Schweizer Wald. Auswertung von Nutzungsszenarien und Waldwachstumsentwicklung. Bundesamt für Umwelt, Bern. Umwelt-Wissen Nr. 1116Google Scholar
  4. Jochem D, Weimar H, Bösch M et al (2015) Estimation of wood removals and fellings in Germany: a calculation approach based on the amount of used roundwood. Eur J For Res 134(5):869–888CrossRefGoogle Scholar
  5. Mantau U (2012) Holzrohstoffbilanz Deutschland: Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung von 1987 bis 2015. Zentrum Holzwirtschaft, HamburgGoogle Scholar
  6. Mantau U, Gschwanter T, Paletto A et al (2016) From inventory to consumer biomass availability – the ITOC-model. Ann For Sci. doi: 10.1007/s13595-016-0582-1 Google Scholar
  7. Matthews R, Mortimer N, Lesschen JP et al (2015) Carbon impacts of biomass consumed in the EU: quantitative assessment. Final project report, project: DG ENER/C1/427. Forest research: Farnham. Accessed 14 Nov 2016
  8. Rinaldi F, Jonsson R, Sallnäs O, Trubins R (2015) Behavioral modelling in a decision support system. Forests 6(2):311–327. doi: 10.3390/f6020311 CrossRefGoogle Scholar
  9. Swiss Agency for the Environment, Forests and Landscape (1999) The Swiss forest – taking stock, interpretation of the second national forest inventory in terms of forest policy, Swiss agency for the environment, Forests and Landscape, BernGoogle Scholar
  10. United Nations (2000) Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand (Industrialized temperate/boreal countries). UNECE/FAO contribution to the global forest resource assessment 2000, Main report (Geneva timber and forest study papers, No. 17). United Nations, New York/GenevaGoogle Scholar
  11. Verkerk PJ, Anttila P, Eggers J et al (2011) The realisable potential supply of woody biomass from forests in the European Union. For Ecol Manag 261:2007–2015CrossRefGoogle Scholar
  12. Vilén T, Gunia K, Verkerk PJ et al (2012) Reconstructed forest age structure in Europe 1950–2010. For Ecol Manag 286:203–218. doi: 10.1016/j.foreco.2012.08.048 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Wageningen Environmental Research (Alterra)WageningenThe Netherlands
  2. 2.University of Hamburg, Centre of Wood ScienceHamburgGermany

Personalised recommendations