An Accurate Database of the Fixation Probabilities for All Undirected Graphs of Order 10 or Less

  • Fernando Alcalde Cuesta
  • Pablo González Sequeiros
  • Álvaro Lozano Rojo
  • Rubén Vigara Benito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10209)


We present a extremely precise database of the fixation probabilities of mutant individuals in a non-homogeneous population which are spatially arranged on a small graph. We explore what features of a graph increase the chances of a beneficial allele of a gene to spread over a structured population.


Undirected Graph Fixation Probability Star Graph Small Graph Moran Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully thank CESGA for providing access to the FinisTerrae2 supercomputer. FA, PG and ÁL are supported by Spanish Ministry of Economy and Competitiveness and European Social Fund (Grant MTM2013-46337-C2-2-P). ÁL and RV are supported by DGA and European Social Fund (Grant E15 Geometría) and CUDZ (Grant CUD 2015-10). RV is supported by Spanish Ministry of Economy and Competitiveness and European Social Fund (Grant MTM2013-45710-C2).


  1. 1.
    Alcalde, F., Sequeiros, P.G., Lozano, Á.: Fast and asymptotic computation of the fixation probability for Moran processes on graphs. BioSystems 129, 25–35 (2015)CrossRefGoogle Scholar
  2. 2.
    Alcalde, F., Sequeiros, P.G., Lozano, Á.: Exploring the topological sources of robustness against invasion in biological and technological networks. Sci. Rep. 6 (2016). Article no. 20666Google Scholar
  3. 3.
    Alcalde, F., Sequeiros, P.G., Lozano, Á.: Suppressors of selection. arXiv:1607.04469
  4. 4.
    Alcalde, F., Sequeiros, P.G., Lozano, Á., Vigara, R.: Data of “an accurate database of the fixation probabilities for all undirected graphs of order 10 or less”, Mendeley Data, v2 (2017).
  5. 5.
    Barreras, A., Peña, J.M.: Accurate and efficient \(LDU\) decomposition of diagonally dominant \(M\)-matrices. Electron. J. Linear Algebra 24, 152–167 (2012/13)Google Scholar
  6. 6.
    Broom, M., Rychtář, J.: An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. Royal Soc. Lond. A 464(2098), 2609–2627 (2008)Google Scholar
  7. 7.
    Broom, M., Rychtář, J., Stadler, B.T.: Evolutionary dynamics on small-order graphs. J. Interdisciplinary Math. 12(2), 129–140 (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Broom, M., Rychtář, J., Stadler, B.T.: Evolutionary dynamics on graphs - the effect of graph structure and initial placement on mutant spread. J. Stat. Theor. Pract. 5(3), 369–381 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Díaz, J., Goldberg, L.A., Mertzios, G.B., Richerby, D., Serna, M., Spirakis, P.G.: Approximating fixation probabilities in the generalized Moran process. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 954–960. SIAM (2012)Google Scholar
  10. 10.
    Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using networkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science conference (SciPy 2008), pp. 11–15 (2008)Google Scholar
  11. 11.
    Hindersin, L., Werner, B., Dingli, D., Traulsen, A.: Should tissue structure suppress or amplify selection to minimize cancer risk? Biol. Direct 11, 41 (2016)CrossRefGoogle Scholar
  12. 12.
    Hindersin, L., Traulsen, A.: Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS Comput. Biol. 11, 1–14 (2015)CrossRefGoogle Scholar
  13. 13.
    The HDF Group: Hierarchical Data Format, version 5, 1997–2016.
  14. 14.
    Houchmandzadeh, B., Vallade, M.: The fixation probability of a beneficial mutation in a geographically structured population. New J. Phys. 13, 073020 (2011)CrossRefGoogle Scholar
  15. 15.
    Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX07), pp. 135–149. SIAM (2007)Google Scholar
  16. 16.
    Komarova, N.L., Senguptac, A., Nowaka, M.A.: Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J. Theor. Biol. 223, 433–450 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Monk, T., Green, P., Paulin, M.: Martingales and fixation probabilities of evolutionary graphs. Proc. R. Soc. A 470. Article no. 20130730Google Scholar
  19. 19.
    Moran, P.A.P.: Random processes in genetics. Proc. Cambridge Philos. Soc. 54, 60–71 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Nowak, M.A.: Evolutionary Dynamics. Harvard University Press, Cambridge (2006)Google Scholar
  21. 21.
    Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005)CrossRefGoogle Scholar
  22. 22.
    Salas-Fumás, V., Sáenz, C., Lozano, Á.: Organisational structure and performance of consensus decisions through mutual influences: a computer simulation approach. Decis. Support Syst. 86, 61–72 (2016)CrossRefGoogle Scholar
  23. 23.
    Stein, W.A., et al.: Sage Mathematics Software (Version 7.0), The Sage Development Team (2016).
  24. 24.
  25. 25.
    Shakarian, P., Roos, P., Johnson, A.: A review of evolutionary graph theory with applications to game theory. BioSystems 107(2), 66–80 (2012)CrossRefGoogle Scholar
  26. 26.
    Tan, S., Lu, J.: Characterizing the effect of population heterogeneity on evolutionary dynamics on complex networks. Sci. Rep. 4, 5034 (2014)CrossRefGoogle Scholar
  27. 27.
    Voorhees, B., Murray, A.: Fixation probabilities for simple digraphs. Proc. R. Soc. A 469, 20120676 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Wasserman, S., Faust, K., Analysis, S.N.: Methods and Applications. Cambridge, New York (1994)Google Scholar
  29. 29.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fernando Alcalde Cuesta
    • 1
  • Pablo González Sequeiros
    • 1
  • Álvaro Lozano Rojo
    • 2
    • 3
  • Rubén Vigara Benito
    • 2
    • 3
  1. 1.University of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Centro Universitario de la Defensa ZaragozaZaragozaSpain
  3. 3.IUMAUniversity of ZaragozaZaragozaSpain

Personalised recommendations