Application of a Membrane Protein Structure Prediction Web Service GPCRM to a Gastric Inhibitory Polypeptide Receptor Model

  • Ewelina Rutkowska
  • Przemyslaw Miszta
  • Krzysztof Mlynarczyk
  • Jakub Jakowiecki
  • Pawel Pasznik
  • Slawomir Filipek
  • Dorota LatekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10209)


A novel versatile tool named GPCRM has been developed. It targets structure prediction of a distinct protein family of G protein-coupled receptors (GPCRs). In principle, GPCRM builds a GPCR model using a MODELLER-based homology modeling procedure. In addition, that commonly used procedure was improved by using comparison of sequence profiles, multiple template structures and the extensive loop refinement in Rosetta. We applied our method to predict a three dimensional structure of a gastric inhibitory polypeptide receptor (GIPR) from the secretin-like class B of human GPCRs. The GIPR model was also tested in an ensemble docking study in which we investigated plausible interactions of four potential antagonists with that receptor. Out of those four ligands we suggested ChEMBL_1933363 as the most potent antagonist of GIPR based on the Glide docking results.


Gastric inhibitory polypeptide receptor GIPR Antagonist ChEMBL_1933363 GPCRM G protein-coupled receptors Membrane proteins MODELLER Rosetta Structure prediction Homology modeling 



The current study was financed by National Science Centre in Poland, the SONATA grant no. DEC-2012/07/D/NZ1/04244.


  1. 1.
    Wald, G.: The molecular basis of visual excitation. Nature 219(5156), 800–807 (1968)CrossRefGoogle Scholar
  2. 2.
    Unger, V.M., Hargrave, P.A., Baldwin, J.M., Schertler, G.F.: Arrangement of rhodopsin transmembrane alpha-helices. Nature 389(6647), 203–206 (1997). doi: 10.1038/38316 CrossRefGoogle Scholar
  3. 3.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M.: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480), 739–745 (2000)CrossRefGoogle Scholar
  4. 4.
    Yuan, S., Ghoshdastider, U., Trzaskowski, B., Latek, D., Debinski, A., Pulawski, W., Wu, R., Gerke, V., Filipek, S.: The role of water in activation mechanism of human N-formyl peptide receptor 1 (FPR1) based on molecular dynamics simulations. PLoS One 7(11), e47114 (2012). doi: 10.1371/journal.pone.0047114
  5. 5.
    Yuan, S., Wu, R., Latek, D., Trzaskowski, B., Filipek, S.: Lipid receptor S1P(1) activation scheme concluded from microsecond all-atom molecular dynamics simulations. PLoS Comput. Biol. 9(10), e1003261 (2013). doi: 10.1371/journal.pcbi.1003261 CrossRefGoogle Scholar
  6. 6.
    Munk, C., Isberg, V., Mordalski, S., Harpsoe, K., Rataj, K., Hauser, A.S., Kolb, P., Bojarski, A.J., Vriend, G., Gloriam, D.E.: GPCRdb: the G protein-coupled receptor database - an introduction. Br. J. Pharmacol. 173(14), 2195–2207 (2016). doi: 10.1111/bph.13509 CrossRefGoogle Scholar
  7. 7.
    Latek, D., Pasznik, P., Carlomagno, T., Filipek, S.: Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS ONE 8(2), e56742 (2013). doi: 10.1371/journal.pone.0056742 CrossRefGoogle Scholar
  8. 8.
    Fridlyand, L.E., Philipson, L.H.: Pancreatic beta cell G-protein coupled receptors and second messenger interactions: a systems biology computational analysis. PLoS ONE 11(5), e0152869 (2016). doi: 10.1371/journal.pone.0152869 CrossRefGoogle Scholar
  9. 9.
    Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., Schioth, H.B.: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63(6), 1256–1272 (2003). doi: 10.1124/mol.63.6.1256 CrossRefGoogle Scholar
  10. 10.
    Suwa, M.: Bioinformatics tools for predicting GPCR gene functions. Adv. Exp. Med. Biol. 796, 205–224 (2014). doi: 10.1007/978-94-007-7423-0_10 CrossRefGoogle Scholar
  11. 11.
    Wallner, B.: ProQM-resample: improved model quality assessment for membrane proteins by limited conformational sampling. Bioinformatics 30(15), 2221–2223 (2014). doi: 10.1093/bioinformatics/btu187 CrossRefGoogle Scholar
  12. 12.
    Busato, M., Giorgetti, A.: Structural modeling of G-protein coupled receptors: an overview on automatic web-servers. Int. J. Biochem. Cell Biol. 77(Pt B), 264–274 (2016). doi: 10.1016/j.biocel.2016.04.004 CrossRefGoogle Scholar
  13. 13.
    Vass, M., Kooistra, A.J., Ritschel, T., Leurs, R., de Esch, I.J., de Graaf, C.: Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol. 30, 59–68 (2016). doi: 10.1016/j.coph.2016.07.007 CrossRefGoogle Scholar
  14. 14.
    van der Horst, E., Peironcely, J.E., Ijzerman, A.P., Beukers, M.W., Lane, J.R., van Vlijmen, H.W., Emmerich, M.T., Okuno, Y., Bender, A.: A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization. BMC Bioinform. 11, 316 (2010). doi: 10.1186/1471-2105-11-316 CrossRefGoogle Scholar
  15. 15.
    Zhang, J., Yang, J., Jang, R., Zhang, Y.: GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23(8), 1538–1549 (2015). doi: 10.1016/j.str.2015.06.007 CrossRefGoogle Scholar
  16. 16.
    Wang, C., Wu, H., Katritch, V., Han, G.W., Huang, X.P., Liu, W., Siu, F.Y., Roth, B.L., Cherezov, V., Stevens, R.C.: Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449), 338–343 (2013). doi: 10.1038/nature12167 CrossRefGoogle Scholar
  17. 17.
    Hollenstein, K., Kean, J., Bortolato, A., Cheng, R.K., Dore, A.S., Jazayeri, A., Cooke, R.M., Weir, M., Marshall, F.H.: Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459), 438–443 (2013). doi: 10.1038/nature12357 CrossRefGoogle Scholar
  18. 18.
    Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., Schnapp, A., Konetzki, I., Sunahara, R.K., Gellman, S.H., Pautsch, A., Steyaert, J., Weis, W.I., Kobilka, B.K.: Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329), 175–180 (2011). doi: 10.1038/nature09648 CrossRefGoogle Scholar
  19. 19.
    Kufareva, I., Katritch, V., Stevens, R.C., Abagyan, R.: Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22(8), 1120–1139 (2014). doi: 10.1016/j.str.2014.06.012 CrossRefGoogle Scholar
  20. 20.
    Worth, C.L., Kleinau, G., Krause, G.: Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models. PLoS ONE 4(9), e7011 (2009). doi: 10.1371/journal.pone.0007011 CrossRefGoogle Scholar
  21. 21.
    Gutierrez-de-Teran, H., Bello, X., Rodriguez, D.: Characterization of the dynamic events of GPCRs by automated computational simulations. Biochem. Soc. Trans. 41(1), 205–212 (2013). doi: 10.1042/BST20120287 CrossRefGoogle Scholar
  22. 22.
    Sandal, M., Duy, T.P., Cona, M., Zung, H., Carloni, P., Musiani, F., Giorgetti, A.: GOMoDo: a GPCRs online modeling and docking webserver. PLoS ONE 8(9), e74092 (2013). doi: 10.1371/journal.pone.0074092 CrossRefGoogle Scholar
  23. 23.
    Launay, G., Teletchea, S., Wade, F., Pajot-Augy, E., Gibrat, J.F., Sanz, G.: Automatic modeling of mammalian olfactory receptors and docking of odorants. Protein Eng. Des. Sel. 25(8), 377–386 (2012). doi: 10.1093/protein/gzs037 CrossRefGoogle Scholar
  24. 24.
    Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993). doi: 10.1006/jmbi.1993.1626 CrossRefGoogle Scholar
  25. 25.
    Latek, D., Bajda, M., Filipek, S.: A hybrid approach to structure and function modeling of G protein-coupled receptors. J. Chem. Inf. Model. 56(4), 630–641 (2016). doi: 10.1021/acs.jcim.5b00451 CrossRefGoogle Scholar
  26. 26.
    Reimann, F., Gribble, F.M.: G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia 59(2), 229–233 (2016). doi: 10.1007/s00125-015-3825-z CrossRefGoogle Scholar
  27. 27.
    Baggio, L.L., Drucker, D.J.: Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6), 2131–2157 (2007). doi: 10.1053/j.gastro.2007.03.054 CrossRefGoogle Scholar
  28. 28.
    Wang, C., Bradley, P., Baker, D.: Protein-protein docking with backbone flexibility. J. Mol. Biol. 373(2), 503–519 (2007). doi: 10.1016/j.jmb.2007.07.050 CrossRefGoogle Scholar
  29. 29.
    Lomize, M.A., Lomize, A.L., Pogozheva, I.D., Mosberg, H.I.: OPM: orientations of proteins in membranes database. Bioinformatics 22(5), 623–625 (2006). doi: 10.1093/bioinformatics/btk023 CrossRefGoogle Scholar
  30. 30.
    Kufareva, I., Rueda, M., Katritch, V., Stevens, R.C., Abagyan, R.: Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19(8), 1108–1126 (2011). doi: 10.1016/j.str.2011.05.012 CrossRefGoogle Scholar
  31. 31.
    Siu, F.Y., He, M., de Graaf, C., Han, G.W., Yang, D., Zhang, Z., Zhou, C., Xu, Q., Wacker, D., Joseph, J.S., Liu, W., Lau, J., Cherezov, V., Katritch, V., Wang, M.W., Stevens, R.C.: Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459), 444–449 (2013). doi: 10.1038/nature12393 CrossRefGoogle Scholar
  32. 32.
    Woetzel, N., Karakas, M., Staritzbichler, R., Muller, R., Weiner, B.E., Meiler, J.: BCL::score–knowledge based energy potentials for ranking protein models represented by idealized secondary structure elements. PLoS ONE 7(11), e49242 (2012). doi: 10.1371/journal.pone.0049242
  33. 33.
    Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins 62(4), 1010–1025 (2006). doi: 10.1002/prot.20817 CrossRefGoogle Scholar
  34. 34.
    Liu, T., Lin, Y., Wen, X., Jorissen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35(Database issue), D198–D201 (2007). doi: 10.1093/nar/gkl999 CrossRefGoogle Scholar
  35. 35.
    Filipski, K.J., Bian, J., Ebner, D.C., Lee, E.C., Li, J.C., Sammons, M.F., Wright, S.W., Stevens, B.D., Didiuk, M.T., Tu, M., Perreault, C., Brown, J., Atkinson, K., Tan, B., Salatto, C.T., Litchfield, J., Pfefferkorn, J.A., Guzman-Perez, A.: A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity. Bioorg. Med. Chem. Lett. 22(1), 415–420 (2012). doi: 10.1016/j.bmcl.2011.10.113 CrossRefGoogle Scholar
  36. 36.
    Cordomi, A., Ismail, S., Matsoukas, M.T., Escrieut, C., Gherardi, M.J., Pardo, L., Fourmy, D.: Functional elements of the gastric inhibitory polypeptide receptor: comparison between secretin- and rhodopsin-like G protein-coupled receptors. Biochem. Pharmacol. 96(3), 237–246 (2015). doi: 10.1016/j.bcp.2015.05.015 CrossRefGoogle Scholar
  37. 37.
    Yaqub, T., Tikhonova, I.G., Lattig, J., Magnan, R., Laval, M., Escrieut, C., Boulegue, C., Hewage, C., Fourmy, D.: Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol. Pharmacol. 77(4), 547–558 (2010). doi: 10.1124/mol.109.060111 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ewelina Rutkowska
    • 1
  • Przemyslaw Miszta
    • 1
  • Krzysztof Mlynarczyk
    • 1
  • Jakub Jakowiecki
    • 1
  • Pawel Pasznik
    • 1
  • Slawomir Filipek
    • 1
  • Dorota Latek
    • 1
    Email author
  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations