Crystal Structure, Phase and Elemental Composition and Chemical Bonding in Bi1−XAXFeOY Systems (A = Sr, Ca; 0 ≤X ≤ 1) from X-ray Diffraction, Mössbauer, and X-ray Photoelectron Spectra

  • A. T. Kozakov
  • A. G. Kochur
  • V. I. Torgashev
  • S. P. Kubrin
  • V. G. Trotsenko
  • A. A. Bush
  • A. V. Nikolskii
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 193)

Abstract

An integrated study of samples of Bi1−x A x FeOy (A = Sr, Ca) systems for 0 ≤ x ≤ 1 (step 0.1) is performed using X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and X-ray photoelectron spectroscopy (XPS). Considerable deviations of actual elemental compositions from nominal ones in the samples of both systems are discovered. Both Fe3+ and Fe4+ ions are found to be present in the samples of the Bi1−x Sr x FeOy system with x > 0. No Fe4+ ions are discovered upon substitution of Bi3+ by Ca2+ in Bi1−x Ca x FeOy , neither by Mössbauer spectroscopy, nor by XPS. Charge compensation in Bi1−x Ca x FeOy takes place mostly via creation of oxygen vacancies.

Notes

Acknowledgements

This study was supported by the Ministry of Education and Science of Russian Federation (grants Nos. 3.6105.2017/BCh, 3.5346.2017/BCh, and RFMEFI60714X0110).

References

  1. 1.
    J. Li, Y. Duan, H. He, D. Song, J. Alloys Compd. 315, 259 (2001)CrossRefGoogle Scholar
  2. 2.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sa, Y.G. Pogorelov, Appl. Phys. Lett. 90, 242901 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Schiemer, R. Withers, L. Noren, Y. Liu, L. Bourgeois, G. Stewart, Chem. Mater. 21, 4223 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Sardar, J. Hong, G. Catalan, P.K. Biswas, M.R. Lees, R.I. Walton, J.F. Scott, S.A.T. Redfern, J. Phys. Condens. Matter 24, 045905 (2012)CrossRefGoogle Scholar
  5. 5.
    E. Folcke, J.M. Le Breton, Y. Breard, A. Maignan, Solid State Sci. 12, 1387 (2010)CrossRefGoogle Scholar
  6. 6.
    A.T. Kozakov, A.G. Kochur, V.I. Torgashev, A.A. Bush, V.Y. Shkuratov, S.P. Kurbin, A.V. Nikolskii, K.A. Googlev, J. Electron Spectrosc. 189, 106 (2013)CrossRefGoogle Scholar
  7. 7.
    A.T. Kozakov, A.G. Kochur, V.I. Torgashev, K.A. Googlev, S.P. Kubrin, V.G. Trotsenko, A.A. Bush, A.V. Nikolskii, J. Alloys Compd. 664, 392 (2016)CrossRefGoogle Scholar
  8. 8.
    M.E. Matsnev, V.S. Rusakov, Conf. Proc. 1489, 178 (2012)Google Scholar
  9. 9.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  10. 10.
    F. Menil, J. Phys. Chem. Solids 46(7), 763 (1985)CrossRefGoogle Scholar
  11. 11.
    E.V. Tsipis, Y.V. Pivak, J.C. Waerenborgh, V.A. Kolotygin, A.P. Viskup, V.V. Kharton, Solid State Ionics 178, 1428 (2007)CrossRefGoogle Scholar
  12. 12.
    R. Lin, Y. Qian, Z. Chen, Ch. Zhu, G. Wang, Yu. Zhang, Mater. Sci. Eng. B 13, 133 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. T. Kozakov
    • 1
  • A. G. Kochur
    • 2
  • V. I. Torgashev
    • 3
  • S. P. Kubrin
    • 1
  • V. G. Trotsenko
    • 3
    • 4
  • A. A. Bush
    • 5
  • A. V. Nikolskii
    • 1
  1. 1.Scientific Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Rostov State Transport UniversityRostov-on-DonRussia
  3. 3.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.Laboratory of Condensed Matter PhysicsUniversity of PicardyAmiensFrance
  5. 5.Moscow State Technical University of Radio Engineering, Electronics and AutomationMoscowRussia

Personalised recommendations