Advertisement

Phototherapy of Psoriasis, a Chronic Inflammatory Skin Disease

  • Emőke Rácz
  • Errol P. Prens
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 996)

Abstract

Phototherapy is an effective treatment modality for several skin diseases which has been in use from the era of the Egyptians. Insight into its mode of action has gradually accumulated over the past decades. A crucial biological effect of ultraviolet radiation is the induction of apoptosis in T lymphocytes and in keratinocytes in the epidermis. Via this mechanism inflammation-induced pathological changes characteristic of psoriasis are counteracted.

Phototherapy remains the only therapeutic option for certain patient groups where modification of the systemic immune reactions is contraindicated, such as by HIV, internal malignancy or pregnancy. UVB treatment is highly cost-effective, which is important in this age of increasing health care costs.

Keywords

Narrow band UVB Broad band UVB PUVA Phototherapy Psoriasis 

References

  1. 1.
    Lim HW et al (2015) Phototherapy in dermatology: a call for action. J Am Acad Dermatol 72(6):1078–1080CrossRefPubMedGoogle Scholar
  2. 2.
    Bolognia J, Jorizzo J, Rapini R (2003) Dermatology, vol 2. Mosby, Edinburgh/London/New York/Oxford/Philadelphia/St Louis/Sidney/TorontoGoogle Scholar
  3. 3.
    Stern R (2007) Psoralen and ultraviolet a light therapy for psoriasis. N Engl J Med 357(7):682–690CrossRefPubMedGoogle Scholar
  4. 4.
    McGregor J, Hawk J (2003) Acute effects of ultraviolet radiation on the skin. In: Freedberg I et al (eds) Fitzpatrick’s dermatology in general medicine. The McGraw-Hill Companies, Inc., New YorkGoogle Scholar
  5. 5.
    Maccubbin AE et al (1995) DNA damage in UVB-irradiated keratinocytes. Carcinogenesis 16(7):1659–1660CrossRefPubMedGoogle Scholar
  6. 6.
    Jans J et al (2006) Differential role of basal keratinocytes in UV-induced immunosuppression and skin cancer. Mol Cell Biol 26(22):8515–8526CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rácz E et al (2011) Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and Th17 pathways. J Invest Dermatol 131:1547CrossRefPubMedGoogle Scholar
  8. 8.
    De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158(1):84–98CrossRefPubMedGoogle Scholar
  9. 9.
    Kammeyer A et al (1997) Prolonged increase of cis-urocanic acid levels in human skin and urine after single total-body ultraviolet exposures. Photochem Photobiol 65(3):593–598CrossRefPubMedGoogle Scholar
  10. 10.
    Snellman E et al (1992) Effect of psoriasis heliotherapy on epidermal urocanic acid isomer concentrations. Acta Derm Venereol 72(3):231–233PubMedGoogle Scholar
  11. 11.
    Schade N, Esser C, Krutmann J (2005) Ultraviolet B radiation-induced immunosuppression: molecular mechanisms and cellular alterations. Photochem Photobiol Sci 4(9):699–708CrossRefPubMedGoogle Scholar
  12. 12.
    Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274(5290):1194–1197CrossRefPubMedGoogle Scholar
  13. 13.
    Aragane Y et al (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140(1):171–182CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krueger JG et al (1995) Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J Exp Med 182(6):2057–2068CrossRefPubMedGoogle Scholar
  15. 15.
    Weatherhead SC et al (2011) Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation. J Invest Dermatol 131(9):1916–1926CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    El-Domyati M et al (2013) Evaluation of apoptosis regulatory proteins in response to PUVA therapy for psoriasis. Photodermatol Photoimmunol Photomed 29(1):18–26CrossRefPubMedGoogle Scholar
  17. 17.
    Walters IB et al (2003) Narrowband (312-nm) UV-B suppresses interferon gamma and interleukin (IL) 12 and increases IL-4 transcripts: differential regulation of cytokines at the single-cell level. Arch Dermatol 139(2):155–161CrossRefPubMedGoogle Scholar
  18. 18.
    Piskin G et al (2003) IL-4 expression by neutrophils in psoriasis lesional skin upon high-dose UVB exposure. Dermatology 207(1):51–53CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang D et al (2016) Ultraviolet irradiation promotes FOXP3 transcription via p53 in psoriasis. Exp Dermatol 25(7):513–518CrossRefPubMedGoogle Scholar
  20. 20.
    Gui J et al (2016) Therapeutic elimination of the type 1 interferon receptor for treating psoriatic skin inflammation. J Invest Dermatol 136:1990CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Furuhashi T et al (2013) Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLoS One 8(1):e54895CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sigmundsdottir H et al (2005) Narrowband-UVB irradiation decreases the production of pro-inflammatory cytokines by stimulated T cells. Arch Dermatol Res 297:39CrossRefPubMedGoogle Scholar
  23. 23.
    Batycka-Baran A et al (2016) The effect of phototherapy on systemic inflammatory process in patients with plaque psoriasis. J Photochem Photobiol B 161:396–401CrossRefPubMedGoogle Scholar
  24. 24.
    Osmancevic A et al (2009) Vitamin D production in psoriasis patients increases less with narrowband than with broadband ultraviolet B phototherapy. Photodermatol Photoimmunol Photomed 25(3):119–123. 2009. 25(3): p. 119-23CrossRefPubMedGoogle Scholar
  25. 25.
    Gupta A et al (2016) Efficacy of narrowband ultraviolet B phototherapy and levels of serum vitamin D3 in psoriasis: a prospective study. Indian Dermatol Online J 7(2):87–92CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ryan C et al (2010) Clinical and genetic predictors of response to narrowband ultraviolet B for the treatment of chronic plaque psoriasis. Br J Dermatol 163(5):1056–1063CrossRefPubMedGoogle Scholar
  27. 27.
    Callis Duffin K et al (2014) Patient satisfaction with treatments for moderate-to-severe plaque psoriasis in clinical practice. Br J Dermatol 170(3):672–680CrossRefPubMedGoogle Scholar
  28. 28.
    Miller DW, Feldman SR (2006) Cost-effectiveness of moderate-to-severe psoriasis treatment. Expert Opin Pharmacother 7(2):157–167CrossRefPubMedGoogle Scholar
  29. 29.
    Nast A et al (2015) European S3-Guidelines on the systemic treatment of psoriasis vulgaris – Update 2015 – Short version – EDF in cooperation with EADV and IPC. J Eur Acad Dermatol Venereol 29(12):2277–2294CrossRefPubMedGoogle Scholar
  30. 30.
    Chen X et al (2013) Narrow-band ultraviolet B phototherapy versus broad-band ultraviolet B or psoralen-ultraviolet A photochemotherapy for psoriasis. Cochrane Database Syst Rev 10:CD009481Google Scholar
  31. 31.
    Lapolla W et al (2011) A review of phototherapy protocols for psoriasis treatment. J Am Acad Dermatol 64(5):936–949CrossRefPubMedGoogle Scholar
  32. 32.
    Markham T, Rogers S, Collins P (2003) Narrowband UV-B (TL-01) phototherapy vs oral 8-methoxypsoralen psoralen-UV-A for the treatment of chronic plaque psoriasis. Arch Dermatol 139(3):325–328CrossRefPubMedGoogle Scholar
  33. 33.
    Archier E et al (2012) Efficacy of psoralen UV-A therapy vs. narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol 26(Suppl 3):11–21CrossRefPubMedGoogle Scholar
  34. 34.
    Coimbra S et al (2013) Principal determinants of the length of remission of psoriasis vulgaris after topical, NB-UVB, and PUVA therapy: a follow-up study. Am J Clin Dermatol 14(1):49–53CrossRefPubMedGoogle Scholar
  35. 35.
    Gerber W et al (2003) Ultraviolet B 308-nm excimer laser treatment of psoriasis: a new phototherapeutic approach. Br J Dermatol 149(6):1250–1258CrossRefPubMedGoogle Scholar
  36. 36.
    Almutawa F et al (2015) Efficacy of localized phototherapy and photodynamic therapy for psoriasis: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed 31(1):5–14CrossRefPubMedGoogle Scholar
  37. 37.
    Fitzmaurice S, Bhutani T, Koo J (2013) Goeckerman regimen for management of psoriasis refractory to biologic therapy: the University of California San Francisco experience. J Am Acad Dermatol 69(4):648–649CrossRefPubMedGoogle Scholar
  38. 38.
    Bailey EE et al (2012) Combination treatments for psoriasis: a systematic review and meta-analysis. Arch Dermatol 148(4):511–522CrossRefPubMedGoogle Scholar
  39. 39.
    Ruzicka T et al (1990) Efficiency of acitretin in combination with UV-B in the treatment of severe psoriasis. Arch Dermatol 126(4):482–486CrossRefPubMedGoogle Scholar
  40. 40.
    Asawanonda P, Nateetongrungsak Y (2006) Methotrexate plus narrowband UVB phototherapy versus narrowband UVB phototherapy alone in the treatment of plaque-type psoriasis: a randomized, placebo-controlled study. J Am Acad Dermatol 54(6):1013–1018CrossRefPubMedGoogle Scholar
  41. 41.
    Wolf P et al (2011) 311 nm ultraviolet B-accelerated response of psoriatic lesions in adalimumab-treated patients. Photodermatol Photoimmunol Photomed 27(4):186–189CrossRefPubMedGoogle Scholar
  42. 42.
    Nast A et al (2012) German S3-guidelines on the treatment of psoriasis vulgaris (short version). Arch Dermatol Res 304(2):87–113CrossRefPubMedGoogle Scholar
  43. 43.
    Menter A et al (2010) Guidelines of care for the management of psoriasis and psoriatic arthritis: section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy. J Am Acad Dermatol 62(1):114–135CrossRefPubMedGoogle Scholar
  44. 44.
    Nakamura M, Bhutani T, Koo JY (2016) Narrowband UVB-induced iatrogenic polymorphous light eruption: a case and suggestions to overcome this rare complication. Dermatol Online J 22(6)Google Scholar
  45. 45.
    Wolf P et al (2016) Desired response to phototherapy versus photo-aggravation in psoriasis: what makes the difference? Exp Dermatol 25(12):937–944Google Scholar
  46. 46.
    D'Souza LS, Payette MJ (2015) Estimated cost efficacy of systemic treatments that are approved by the US Food and Drug Administration for the treatment of moderate to severe psoriasis. J Am Acad Dermatol 72(4):589–598CrossRefPubMedGoogle Scholar
  47. 47.
    Koek MB et al (2009) Home versus outpatient ultraviolet B phototherapy for mild to severe psoriasis: pragmatic multicentre randomised controlled non-inferiority trial (PLUTO study). BMJ 338:b1542CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koek MB et al (2010) Cost effectiveness of home ultraviolet B phototherapy for psoriasis: economic evaluation of a randomised controlled trial (PLUTO study). BMJ 340:c1490CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Arzpayma P et al (2016) Creation and assessment of a computerized modeling tool for optimizing planning of home and hospital-based phototherapy. Br J Dermatol 176:1390CrossRefGoogle Scholar
  50. 50.
    Pathirana D et al (2009) European S3-guidelines on the systemic treatment of psoriasis vulgaris. J Eur Acad Dermatol Venereol 23(Suppl 2):1–70CrossRefPubMedGoogle Scholar
  51. 51.
    Racz E, Prens EP (2015) Phototherapy and photochemotherapy for psoriasis. Dermatol Clin 33(1):79–89CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  2. 2.Department of DermatologyErasmus University Medical CenterRotterdamThe Netherlands

Personalised recommendations