UV Disinfection of Wastewater and Combined Sewer Overflows

  • John GibsonEmail author
  • Jennifer Drake
  • Bryan Karney
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 996)


Municipal wastewater contains bacteria, viruses, and other pathogens that adversely affect the environment, human health, and economic activity. One way to mitigate these effects is a final disinfection step using ultraviolet light (UVL). The advantages of UVL disinfection, when compared to the more traditional chlorine, include no chlorinated by-products, no chemical residual, and relatively compact size. The design of most UV reactors is complex. It involves lamp selection, power supply design, optics, and hydraulics. In general, medium pressure lamps are more compact, powerful, and emit over a wider range of light than the more traditional low pressure lamps. Low pressure lamps, however, may be electrically more efficient. In UV disinfection, the fraction of surviving organisms (e.g. E. coli) will decrease exponentially with increasing UV dose. However, the level of disinfection that can be achieved is often limited by particle-associated organisms. Efforts to remove or reduce the effects of wastewater particles will often improve UV disinfection effectiveness. Regrowth, photoreactivation, or dark repair after UV exposure are sometimes cited as disadvantages of UV disinfection. Research is continuing in this area, however there is little evidence that human pathogens can photoreactivate in environmental conditions, at doses used in wastewater treatment. The UV disinfection of combined sewer overflows, a form of wet weather pollution, is challenging and remains largely at the research phase. Pre-treatment of combined sewer overflows (CSOs) with a cationic polymer to induce fast settling, and a low dose of alum to increase UV transmittance, has shown promise at the bench scale.


Disinfection Photoreactivation Indicator organisms Lamp selection Alum 


  1. 1.
    Adams BJ, Papa F (2000) Urban stormwater management planning with analytical probabilistic models. Wiley, New YorkGoogle Scholar
  2. 2.
    Bohrerova Z, Linden KG (2007) Standardizing photoreactivation: comparison of DNA photorepair rate in Escherichia coli using four different fluorescent lamps. Water Res 41:2832–2838. doi: 10.1016/j.watres.2007.03.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Craik SA, Weldon D, Finch GR et al (2001) Inactivation of cryptosporidium parvum oocysts using medium-and low-pressure ultraviolet radiation. Water Res 35:1387–1398CrossRefPubMedGoogle Scholar
  4. 4.
    Donovan EP, Staskal DF, Unice KM et al (2008) Risk of gastrointestinal disease associated with exposure to pathogens in the sediments of the lower passaic river. Appl Environ Microbiol 74:1004–1018. doi: 10.1128/AEM.01203-07 CrossRefPubMedGoogle Scholar
  5. 5.
    Eischeid AC, Linden KG (2011) Molecular indications of protein damage in adenoviruses after UV disinfection. Appl Environ Microbiol 77:1145–1147. doi: 10.1128/AEM.00403-10 CrossRefPubMedGoogle Scholar
  6. 6.
    Emerick RW, Loge FJ, Ginn T, Darby JL (2000) Modeling the inactivation of particle-associated coliform bacteria. Water Environ Res 72:432–438CrossRefGoogle Scholar
  7. 7.
    Emerick RW, Loge FJ, Thompson D, Darby JL (1999) Factors influencing ultraviolet disinfection performance part II: association of coliform bacteria with wastewater particles. Water Environ Res 71:1178–1187. doi: 10.2175/106143097X122004 CrossRefGoogle Scholar
  8. 8.
    EPA (2016) Report to congress – CSOs into the great lakes basin (EPA 833-R-16-006). U.S. Environmental Protection AgencyGoogle Scholar
  9. 9.
    Exall K, Marsalek J (2013) A coagulant survey for chemically enhanced primary treatment of synthetic CSOs. Water Air Soil Pollut. doi: 10.1007/s11270-012-1414-z
  10. 10.
    Gehr R, Wagner M, Veerasubramanian P, Payment P (2003) Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res 37:4573–4586. doi: 10.1016/S0043-1354(03)00394-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Gibson J, Droppo I, Farnood R et al (2012) Hydrodynamic treatment of wastewater effluent flocs for improved disinfection. Water Environ Res 84:387–395. doi: 10.2175/106143012X13347678384567 CrossRefPubMedGoogle Scholar
  12. 12.
    Gibson J, Farnood R, Seto P (2016) Chemical pretreatment of combined sewer overflows for improved UV disinfection. Water Sci Technol 73:375–381. doi: 10.2166/wst.2015.447 CrossRefPubMedGoogle Scholar
  13. 13.
    Gibson JH, Hon H, Farnood R et al (2009) Effects of ultrasound on suspended particles in municipal wastewater. Water Res 43:2251–2259. doi: 10.1016/j.watres.2009.02.024 CrossRefPubMedGoogle Scholar
  14. 14.
    Gooré Bi E, Monette F, Gasperi J, Perrodin Y (2015) Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled “substance and bioassay” approach. Environ Sci Pollut Res 22:4460–4474. doi: 10.1007/s11356-014-3650-9 CrossRefGoogle Scholar
  15. 15.
    Guo M, Hu H, Bolton JR, El-Din MG (2009) Comparison of low- and medium-pressure ultraviolet lamps: Photoreactivation of Escherichia coli and total coliforms in secondary effluents of municipal wastewater treatment plants. Water Res 43:815–821. doi: 10.1016/j.watres.2008.11.028 CrossRefPubMedGoogle Scholar
  16. 16.
    Hu X, Geng S, Wang X, Hu C (2012) Inactivation and photorepair of enteric pathogenic microorganisms with ultraviolet irradiation. Environ Eng Sci 29:549–553. doi: 10.1089/ees.2010.0379 CrossRefGoogle Scholar
  17. 17.
    Jagai JS, Li Q, Wang S et al (2015) Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: an analysis of Massachusetts data, 2003–2007. Environ Health Perspect. doi: 10.1289/ehp.1408971
  18. 18.
    Keen OS, Love NG, Linden KG (2012) The role of effluent nitrate in trace organic chemical oxidation during UV disinfection. Water Res 46:5224–5234. doi: 10.1016/j.watres.2012.06.052 CrossRefPubMedGoogle Scholar
  19. 19.
    Kollu K, Örmeci B (2014) Regrowth potential of bacteria after ultraviolet disinfection in the absence of light and dark repair. J Environ Eng 141:4014069CrossRefGoogle Scholar
  20. 20.
    Li JG, Horneck H, Averill D et al (2004) High-rate retention treatment basins for CSO control in Windsor, Ontario. Water Qual Res J Can 39:449–456Google Scholar
  21. 21.
    Lindenauer KG, Darby JL (1994) Ultraviolet disinfection of wastewater: effect of dose on subsequent photoreactivation. Water Res 28:805–817CrossRefGoogle Scholar
  22. 22.
    Loge FJ, Emerick RW, Thompson DE et al (1999) Factors influencing ultraviolet disinfection performance part I: light penetration to wastewater particles. Water Environ Res 71:377–381. doi: 10.2175/106143097X122176 CrossRefGoogle Scholar
  23. 23.
    Masschelein WJ (2002) Ultraviolet light in water and wastewater sanitation. Lewis Publishers, Boca RatonCrossRefGoogle Scholar
  24. 24.
    Nebot Sanz E, Salcedo Dávila I, Andrade Balao JA, Quiroga Alonso JM (2007) Modelling of reactivation after UV disinfection: effect of UV-C dose on subsequent photoreactivation and dark repair. Water Res 41:3141–3151. doi: 10.1016/j.watres.2007.04.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Potera C (2015) After the fall: gastrointestinal illness following downpours. Environ Health Perspect 123:A243–A243. doi: 10.1289/ehp.123-A243 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sancar A (1994) Structure and function of DNA photolyase. Biochemistry (Mosc) 33:2–9CrossRefGoogle Scholar
  27. 27.
    Sehnaoui K, Gehr R (2003) Fouling of UV lamp sleeves: exploring inconsistencies in the role of iron. National Library of Canada= Bibliothèque nationale du CanadaGoogle Scholar
  28. 28.
    Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236. doi: 10.1039/b201230h CrossRefPubMedGoogle Scholar
  29. 29.
    Tchobanoglous G (2003) Wastewater engineering: treatment and reuse. McGraw-Hill, BostonGoogle Scholar
  30. 30.
    Zimmer J, Slawson R, Huck P (2003) Inactivation and potential repair of cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation. Water Res 37:3517–3523. doi: 10.1016/S0043-1354(03)00238-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of TorontoTorontoCanada
  2. 2.Division of Environmental Engineering and Energy Systems, Department of Civil EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations