Endovascular Treatment of Infrapopliteal Arteries

  • Stephen W. WaldoEmail author
  • Ehrin J. Armstrong


Patients with critical limb ischemia typically have multilevel peripheral artery disease including infrapopliteal atherosclerotic occlusions. Endovascular interventions to the infrapopliteal arteries are increasingly performed to maximize limb salvage and prevent major amputation. Recent advances in technical approaches to infrapopliteal artery lesion crossing and balloon angioplasty have improved limb salvage rates, while the addition of adjunctive and emerging therapies promises to improve long-term outcomes in this challenging patient population.


  1. 1.
    Shishehbor MH, White CJ, Gray BH, et al. Critical limb ischemia: an expert statement. J Am Coll Cardiol. 2016;68:2002–15.CrossRefPubMedGoogle Scholar
  2. 2.
    Rueda CA, Nehler MR, Perry DJ, et al. Patterns of artery disease in 450 patients undergoing revascularization for critical limb ischemia: implications for clinical trial design. J Vasc Surg. 2008;47:995–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Rundbach JH, Armstrong EJ, Contos B, et al. Key concepts in critical limb ischemia: selected proceedings from the 2015 vascular interventional advances meeting. Ann Vasc Surg. 2017;38:191–205.CrossRefGoogle Scholar
  4. 4.
    Gray B, Diaz-Sandoval L, Dieter R, Jaff M, White C. Peripheral vascular disease Committee for the society for cardiovascular angiography and interventions. SCAI expert consensus statement for infrapopliteal arterial intervention appropriate use. Catheter Cardiovasc Interv. 2014;84:539–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Conte MS, Geraghty PJ, Bradbury AW, et al. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg. 2009;50:1462–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Iida O, Nakamura M, Yamauchi Y, et al. Endovascular treatment for infrainfuinal vessels in patients with critical limb ischemia: the OLIVE registry, a prospective, multicenter study in Japan with 12-month follow-up. Circ Cardiovasc Interv. 2013;6:68–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Iida O, Nakamura M, Yamauchi Y, et al. Three-year outcomes of the OLIVE registry, a prospective multicenter study of patients with critical limb ischemia. J Am Coll Cardiol Intv. 2015;8:1493–502.CrossRefGoogle Scholar
  8. 8.
    Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from the Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol. 2015;65:931–41.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925–34.CrossRefGoogle Scholar
  10. 10.
    BASIL-2: Bypass vs. Angioplasty in Severe Ischaemia of the Leg – 2. ISRCTN27728689.
  11. 11.
    Mendard MT, Farber A, Assmann SF, et al. Design and rationale of the best endovascular versus best surgical therapy for patients with critical limb ischemia (BEST-CLI) trial. J Am Heart Assn. 2016;5:e003219.CrossRefGoogle Scholar
  12. 12.
    Abu Dabrh AM, Steffen MW, Undavalli C, et al. Bypass surgery versus endovascular interventions in severe or critical limb ischemia. J Vasc Surg. 2016;63:244–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Siracuse JJ, Menard MT, Eslami MH, et al. Comparison of open and endovascular treatment of patients with critical limb ischemia in the vascular quality initiative. J Vasc Surg. 2016;63:958–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Hicks CW, Najafian A, Farber A, et al. Below-knee endovascular interventions have better outcomes compared to open bypass for patients with critical limb ischemia. Vasc Med. 2016;22:28–34. epub ahead of printCrossRefPubMedGoogle Scholar
  15. 15.
    Bisdas T, Borowski M, Stavroulakis K, et al. Endovascular therapy versus bypass surgery as first-line treatment strategies for critical limb ischemia: results of the interim analysis of the CRITISCH registry. J Am Coll Cardiol Intv. 2016;9:2557–65.CrossRefGoogle Scholar
  16. 16.
    TASC Steering Committee, Jaff MR, White CJ, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the inter-society consensus for the management of peripheral arterial disease (TASC II). J Endovasc Ther. 2015;22:663–77.CrossRefGoogle Scholar
  17. 17.
    Singh GD, Armstrong EJ, Yeo KK, et al. Endovascular recanalization of infrapopliteal occlusions in patients with critical limb ischemia. J Vasc Surg. 2014;59:1300–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kawarada O, Sakamoto S, Harada K, Ishihara M, Yasuda S, Ogawa H. Contemporary crossing techniques for infrapopliteal chronic total occlusions. J Endovasc Ther. 2014;21:266–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Rogers RK, Datillo PB, Garcia JA, Tsai T, Casserly IP. Retrograde approach to recanalization of complex tibial disease. Catheter Cardiovasc Interv. 2011;77:915–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Botti CF, Ansel GM, Silver MJ, Barker BJ, South S. Percutaneous retrograde tibial access in limb salvage. J Endovasc Ther. 2003;10:614–8.PubMedGoogle Scholar
  21. 21.
    Kang WY, Campia U, Ota H, et al. Vascular access in critical limb ischemia. Cardiovasc Revasc Med. 2016;17:190–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Mustapha JA, Saab F, Diaz-Sandoval L, et al. Tibio-pedal arterial minimally invasive retrograde revascularization in patients with advanced peripheral vascular disease: the TAMI technique, original case series. Catheter Cardiovasc Interv. 2014;83:987–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Montero-Baker M, Schmidt A, Braunlich S, et al. Retrograde approach for complex popliteal and tibioperoneal occlusions. J Endovasc Ther. 2008;15:594–604.CrossRefPubMedGoogle Scholar
  24. 24.
    Bazan HA, Le L, Donovan M, et al. Retrograde pedal access for patients with critical limb ischemia. J Vasc Surg. 2014;60:375–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Walker CM, Mustapha J, Zeller T, et al. Tibiopedal access for crossing of infrainguinal artery occlusions: a prospective multicenter observational study. J Endovasc Ther. 2016;23:839–46.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Manzi M, Fusaro M, Ceccacci T, Erente G, Dalla Paola L, Brocco E. Clinical results of below-the knee intervention using pedal-plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg. 2009;50:331–7.Google Scholar
  27. 27.
    Kawarada O, Yokoi Y, Higashimori A, Waratani N, Waseda K, Honda Y, Fitzgerald PJ. Stent-assisted below-the-ankle angioplasty for limb salvage. J Endovasc Ther. 2011;18:32–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Katsanos K, Diamantopoulos A, Spiliopoulos S, Karnabatidis D, Siablis D. Below-the-ankle angioplasty and stenting for limb salvage: anatomical considerations and long-term outcomes. Cardiovasc Intv Radiol. 2013;36:926–35.CrossRefGoogle Scholar
  29. 29.
    Iida O, Soga Y, Hirano K, et al. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg. 2012;55:363–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Bosanquet DC, Glasbey JC, Williams IM, et al. Systematic review and meta-analysis or direct versus indirect angiosomal revascularization of infrapopliteal arteries. Eur J Vasc Endovasc Surg. 2014;48:88–97.CrossRefPubMedGoogle Scholar
  31. 31.
    Baumann F, Fust J, Engelberger RP, et al. Early recoil after balloon angioplasty of tibial artery obstructions in patients with critical limb ischemia. J Endovasc Ther. 2014;21:44–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Schmidt A, Ulrich M, Winkler B, et al. Angiographic patency and clinical outcome after balloon angioplasty for extensive infrapopliteal arterial disease. Catheter Cardiovasc Interv. 2010;76:1047–54.CrossRefPubMedGoogle Scholar
  33. 33.
    Baumann F, Bloesch S, Engelberger RP, et al. Clinically-driven need for secondary interventions after endovascular revascularization of tibial arteries in patients with critical limb ischemia. J Endovasc Ther. 2013;20:707–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Iida O, Soga Y, Kawasaki D, et al. Angiographic restenosis and its clinical impact after infrapopliteal angioplasty. Eur J Vasc Endovasc Surg. 2012;44:425–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Scheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in ischemic peripheral arterial disease. J Am Coll Cardiol. 2012;60:2290–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg. 2012;55:390–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Katsanos K, Kitrou P, Spiliopoulous S, et al. Comparative effectiveness of plain balloon angioplasty, bare metal stents, drug-coated balloons, and drug-eluting stents for the treatment of infrapopliteal peripheral artery disease: systematic review and Bayesian network meta-analysis of randomized controlled trials. J Endovasc Ther. 2016;23:851–63.CrossRefPubMedGoogle Scholar
  38. 38.
    Karnabatidis D, Katsanos K, Spiliopoulos S, et al. Incidence, anatomical location, and clinical significance of compressions and fractures in infrapopliteal balloon-expandable metal stents. J Endovasc Ther. 2009;16:15–22.CrossRefPubMedGoogle Scholar
  39. 39.
    Laird JR, Schneider PA, Tepe G, et al. Durability of treatment effect using a drug-coated balloon for femoropopliteal lesions: 24-month results of IN.PACT SFA. J Am Coll Cardiol. 2015;66:2329–38.CrossRefPubMedGoogle Scholar
  40. 40.
    Schmidt A, Piorkowski M, Werner M, et al. First experience with drug-eluting balloons in infrapopliteal arteries. J Am Coll Cardiol. 2011;58:1105–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Liistro F, Porto I, Angioli P, et al. Drug-eluting balloon in peripheral intervention for below the knee angioplasty evalaution (DEBATE-BTK): a randomized trial in diabetic pateints with critical limb ischemia. Circulation. 2013;128:615–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Zeller T, Baumgartner I, Scheinert D, et al. IN.PACT DEEP trial investigators. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol. 2014;64:1568–76.CrossRefPubMedGoogle Scholar
  43. 43.
    Zeller T, Beschorner U, Pilger E, et al. Paclitaxel coated balloons in infrapopliteal arteries: 12-month results from the Biolux P-II randomized trial. J Am Coll Cardiol Intv. 2015;8:1614–22.CrossRefGoogle Scholar
  44. 44.
    Cassese N, Ndrepepa G, Liistro F, et al. Drug-coated balloons for revascularization of infrapopliteal arteries: a meta-analysis of randomized trials. J Am Coll Cardiol Intv. 2016;9:1072–80.CrossRefGoogle Scholar
  45. 45.
    Laird JR, Zeller T, Gray BH, et al. Limb salvage following laser-assisted angioplasty for critical limb ischemia: results of the LACI multicenter trial. J Endovasc Ther. 2006;12:1–11.CrossRefGoogle Scholar
  46. 46.
    Bosiers M, Peeters P, Elst FV, et al. Excimer laser assisted angioplasty for critical limb ischemia: results of the LACI Belgium study. Eur J Vasc Endovasc Surg. 2005;29:613–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Singh T, Kodenchery M, Artham S, et al. Laser in infrapopliteal and popliteal stenosis (LIPS): retrospective review of laser-assisted balloon angioplasty versus balloon angioplasty alone for below knee arterial disease. Cardiovasc Interv Ther. 2014;29:109–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Piyaskulkaew C, Parvataneni K, Ballout H, et al. Laser in infrapopliteal and popliteal stenosis 2 study (LIPS2): long-term outcomes of laser-assisted balloon angioplasty versus balloon angioplasty for below knee peripheral arterial disease. Catheter Cardiovasc Interv. 2015;86:1211–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Das T, Mutapha J, Indes J, et al. Technique optimization of orbital atherectomy in calcified peripheral lesions of the lower extremities: the CONFIRM series, a prospective multicentre registry. Catheter Cardiovasc Interv. 2014;83:115–22.CrossRefPubMedGoogle Scholar
  50. 50.
    Safian RD, Niazi K, Runyon JP, et al. Orbital atherectomy for infrapopliteal disease: device concept and outcome data for the OASIS trial. Catheter Cardiovasc Interv. 2009;73:406–12.PubMedGoogle Scholar
  51. 51.
    Shammas NW, Lam R, Mustapha J, et al. Comparison of orbital atherectomy plus balloon angioplasty versus balloon angioplasty alone in patients with critical limb ischemia: results of the CALCIUM 360 randomized pilot trial. J Endovasc Ther. 2012;19:480–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Rastan A, McKinsey JF, Garcia LA, et al. One-year outcomes following directional atherectomy of infrapopliteal artery lesions: subgroup results of the prospective, multicentre DEFINITIVE LE trial. J Endovasc Ther. 2015;22:839–46.CrossRefPubMedGoogle Scholar
  53. 53.
    Owens CD, Gasper WJ, Walker JP, et al. Safety and feasibility of adjunctive dexamethasone infusion into the adventitia of the femoropopliteal artery following endovascular intervention. J Vasc Surg. 2014;59:1016–24.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Varcoe RL, Schouten O, Thomas SD, Lennox AF. Experience with the absorb everolimus-eluting bioresorbable vascular scaffold below the knee: six-month clinical and imaging outcomes. J Endovasc Ther. 2015;22:226–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Damianou C, Couppis A. Feasibility study for removing calcified material using a planar rectangular ultrasound transducer. J Ultrasound. 2016;19:115–23.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interventional Cardiology, Denver VA Medical CenterUniversity of ColoradoDenverUSA

Personalised recommendations