Advertisement

Coronary Orbital Atherectomy

  • Michael S. Lee
  • Brad J. Martinsen
  • Richard Shlofmitz
  • Jeffrey W. Chambers
Chapter

Abstract

Despite advances in interventional techniques, treatment of calcified coronary lesions remains a challenge. Stent placement in severely calcified lesions can result in stent underexpansion, malapposition, procedural complications, and worse long-term outcomes than placement in noncalcified lesions. Target lesion preparation with the Diamondback 360° Coronary Orbital Atherectomy System (Cardiovascular Systems, Inc., St. Paul, MN) prior to stenting can mitigate these issues and allow successful stent implantation that may not be possible otherwise. We review coronary artery calcification and its prevalence, risk factors, and impact on percutaneous coronary intervention, as well as the principles of utilizing coronary orbital atherectomy in severely calcified lesions.

References

  1. 1.
    American Kidney Fund. Chronic kidney disease (CKD). 2016 [cited 2016 Oct 25]. Available from: http://www.kidneyfund.org/kidney-disease/chronic-kidney-disease-ckd/.
  2. 2.
    Benezet J, de la Llera LS D, Cubero JM, Villa M, Fernandez-Quero M, Sanchez-Gonzalez A. Drug-eluting stents following rotational atherectomy for heavily calcified coronary lesions: long-term clinical outcomes. J Invasive Cardiol. 2011;23(1):28–32.PubMedGoogle Scholar
  3. 3.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Bhatt P, Parikh P, Patel A, Chag M, Chandarana A, Parikh R, et al. Orbital atherectomy system in treating calcified coronary lesions: 3-year follow-up in first human use study (ORBIT I Trial). Cardiovasc Revasc Med. 2014;Google Scholar
  5. 5.
    Bhatt P, Parikh P, Patel A, Chag M, Chandarana A, Parikh R, et al. Long-term safety and performance of the orbital atherectomy system for treating calcified coronary artery lesions: 5-year follow-up in the ORBIT I trial. Cardiovasc Revasc Med. 2015;16(4):213–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Bourantas CV, Zhang Y-J, Garg S, Iqbal J, Valgimigli M, Windecker S, et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials. Heart. 2014;100(15):1158–64.CrossRefPubMedGoogle Scholar
  7. 7.
    Brown DL, George CJ, Steenkiste AR, Cowley MJ, Leon MB, Cleman MW, et al. High-speed rotational atherectomy of human coronary stenoses: acute and one-year outcomes from the New Approaches to Coronary Intervention (NACI) registry. Am J Cardiol. 1997;80(10A):60K–7K.CrossRefPubMedGoogle Scholar
  8. 8.
    Cavusoglu E, Kini AS, Marmur JD, Sharma SK. Current status of rotational atherectomy. Catheter Cardiovasc Interv. 2004;62(4):485–98.CrossRefPubMedGoogle Scholar
  9. 9.
    CDC. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2017. Centers for Disease Control and Prevention, Atlanta. Available from: https://www.cdc.gov/diabetes/data/statistics/statistics-report.html.
  10. 10.
    CDC. National chronic kidney disease fact sheet: general information and national estimates on chronic kidney disease in the United States, 2017. Centers for Disease Control and Prevention, Atlanta. Available from: https://www.cdc.gov/diabetes/pubs/pdf/kidney_factsheet.pdf
  11. 11.
    CDC. Chronic Kidney Disease Initiative: protecting kidney health, 2015. Centers for Disease Control and Prevention, Atlanta. Available from: https://www.cdc.gov/diabetes/programs/initiatives/kidney.html
  12. 12.
    Chambers J. Orbital atherectomy treatment of de novo, severely calcified coronary lesions: two-year results of the ORBIT II trial. PCR online. 2015 [cited 2015 Dec 18]. Available from: http://www.pcronline.com/Lectures/2015/Orbital-atherectomy-treatment-of-de-novo-severely-calcified-coronary-lesions-two-year-results-of-the-ORBIT-II-trial.
  13. 13.
    Lee M, Genereux P, Shlofmitz R, Phillipson D, Anose BM, Martinsen BJ, et al. Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial. Cardiovasc Revasc Med. 2017;18(4):261–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Chambers JW, Diage T. Evaluation of the Diamondback 360 Coronary Orbital Atherectomy System for treating de novo, severely calcified lesions. Expert Rev Med Devices. 2014;25:1–10.Google Scholar
  15. 15.
    Chambers JW, Feldman RL, Himmelstein SI, Bhatheja R, Villa AE, Strickman NE, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7(5):510–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Chambers J, Généreux P, Lee A, Lewin J, Young C, Crittendon J, et al. The potential cost-effectiveness of the Diamondback 360® Coronary Orbital Atherectomy System for treating de novo, severely calcified coronary lesions: an economic modeling approach. Ther Adv Cardiovasc Dis. 2015;10(2):74–85.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Clavijo LC, Steinberg DH, Torguson R, Kuchulakanti PK, Chu WW, Fournadjiev J, et al. Sirolimus-eluting stents and calcified coronary lesions: clinical outcomes of patients treated with and without rotational atherectomy. Catheter Cardiovasc Interv. 2006;68(6):873–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Colombo A, Stankovic G. Coronary perforations: old screenplay, new actors! J Invasive Cardiol. 2004;16(6):302–3.PubMedGoogle Scholar
  19. 19.
    Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117(22):2938–48.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992;86(1):64–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Folsom AR, Kronmal RA, Detrano RC, O’Leary DH, Bild DE, Bluemke DA, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168(12):1333–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Garcia de Lara J, Pinar E, Ramon Gimeno J, Hurtado JA, Lacunza J, Valdesuso R, et al. Percutaneous coronary intervention in heavily calcified lesions using rotational atherectomy and paclitaxel-eluting stents: outcomes at one year. Rev Esp Cardiol. 2010;63(1):107–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Genereux P, Madhavan MV, Mintz GS, Maehara A, Palmerini T, Lasalle L, et al. Ischemic autcomes after coronary intervention of calcified vessels in acute coronary syndromes: pooled analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) and ACUITY (acute catheterization and urgent intervention triage strategy) trials. J Am Coll Cardiol. 2014;63(18):1845–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Généreux P, Lee AC, Kim CY, Lee M, Shlofmitz R, Moses JW, et al. Orbital atherectomy for treating de novo severely calcified coronary narrowing (1-year results from the pivotal ORBIT II trial). Am J Cardiol. 2015;115(12):1685–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Généreux P, Bettinger N, Redfors B, Lee AC, Kim CY, Lee MS, et al. Two-year outcomes after treatment of severely calcified coronary lesions with the orbital atherectomy system and the impact of stent types: insight from the ORBIT II trial. Catheter Cardiovasc Interv (Off J Soc Card Angiogr Interv). 2016;88(3):369–77.CrossRefGoogle Scholar
  27. 27.
    Gilutz H, Weinstein JM, Ilia R. Repeated balloon rupture during coronary stenting due to a calcified lesion: an intravascular ultrasound study. Catheter Cardiovasc Interv. 2000;50(2):212–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics – 2014 update: a report from the american heart association. Circulation. 2014;129(3):e28–292.CrossRefPubMedGoogle Scholar
  29. 29.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.CrossRefPubMedGoogle Scholar
  30. 30.
    Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). Circulation. 2006;113(11):e463–654.CrossRefPubMedGoogle Scholar
  32. 32.
    Howlader N, Noone A, Garshell J, Neyman N, Altekruse S, Kosary C, et al. SEER Cancer statistics review, 1975–2010 2013 [cited 2016 Oct 25]. Available from: http://seer.cancer.gov/archive/csr/1975_2010/
  33. 33.
    Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JLE, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kahn JK, Hartzler GO. Balloon rupture due to lesion morphology during coronary angioplasty. Catheter Cardiovasc Diagn. 1990;21(2):89–91.CrossRefGoogle Scholar
  35. 35.
    Khattab AA, Otto A, Hochadel M, Toelg R, Geist V, Richardt G. Drug-eluting stents versus bare metal stents following rotational atherectomy for heavily calcified coronary lesions: late angiographic and clinical follow-up results. J Interv Cardiol. 2007;20(2):100–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee MS, Shah N. The impact and pathophysiologic consequences of coronary artery calcium deposition in percutaneous coronary interventions. J Invasive Cardiol. 2016;28(4):160–7.PubMedGoogle Scholar
  37. 37.
    Lee M, Nguyen H, Shlofmitz R. Incidence of bradycardia and outcomes of patients who underwent orbital atherectomy without temporary pacemaker. J Intervent Cardiol. 2017;29(2):59–62.Google Scholar
  38. 38.
    Lee MS, Shlofmitz E, Kaplan B, Alexandru D, Meraj P, Shlofmitz R. Real-world multicenter registry of patients with severe coronary artery calcification undergoing orbital atherectomy. J Interv Cardiol. 2016;29(4):357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Leopold JA. Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015;25(4):267–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44–122.CrossRefPubMedGoogle Scholar
  41. 41.
    Madhavan MV, Tarigopula M, Mintz GS, Maehara A, Stone GW, Genereux P. Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol. 2014;63(17):1703–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Mehanna E, Bezerra HG, Prabhu D, Brandt E, Chamié D, Yamamoto H, et al. Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography. Circ J (Off J Jpn Circ Soc). 2013;77(9):2334–40.Google Scholar
  43. 43.
    Mintz GS. Intravascular imaging of coronary calcification and its clinical implications. JACC Cardiovasc Imaging. 2015;8(4):461–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Chuang YC, et al. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation. 1995;91(7):1959–65.CrossRefPubMedGoogle Scholar
  45. 45.
    Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37(5):1478–92.CrossRefPubMedGoogle Scholar
  46. 46.
    Mosseri M, Satler LF, Pichard AD, Waksman R. Impact of vessel calcification on outcomes after coronary stenting. Cardiovasc Revasc Med. 2005;6(4):147–53.CrossRefPubMedGoogle Scholar
  47. 47.
    Moussa I, Di Mario C, Moses J, Reimers B, Di Francesco L, Martini G, et al. Coronary stenting after rotational atherectomy in calcified and complex lesions. Angiographic and clinical follow-up results. Circulation. 1997;96(1):128–36.CrossRefPubMedGoogle Scholar
  48. 48.
    Moussa I, Ellis SG, Jones M, Kereiakes DJ, McMartin D, Rutherford B, et al. Impact of coronary culprit lesion calcium in patients undergoing paclitaxel-eluting stent implantation (a TAXUS-IV sub study). Am J Cardiol. 2005;96(9):1242–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nakano M, Otsuka F, Yahagi K, Sakakura K, Kutys R, Ladich ER, et al. Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. Eur Heart J. 2013;34(42):3304–13.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nehler MR, Duval S, Diao L, Annex BH, Hiatt WR, Rogers K, et al. Epidemiology of peripheral arterial disease and critical limb ischemia in an insured national population. J Vasc Surg. 2014;60(3):686–695.e2.CrossRefPubMedGoogle Scholar
  52. 52.
    Nishida K, Kimura T, Kawai K, Miyano I, Nakaoka Y, Yamamoto S, et al. Comparison of outcomes using the sirolimus-eluting stent in calcified versus non-calcified native coronary lesions in patients on- versus not on-chronic hemodialysis (from the j-Cypher registry). Am J Cardiol. 2013;112(5):647–55.CrossRefPubMedGoogle Scholar
  53. 53.
    Onuma Y, Tanimoto S, Ruygrok P, Neuzner J, Piek JJ, Seth A, et al. Efficacy of everolimus eluting stent implantation in patients with calcified coronary culprit lesions: two-year angiographic and three-year clinical results from the SPIRIT II study. Catheter Cardiovasc Interv. 2010;76(5):634–42.CrossRefPubMedGoogle Scholar
  54. 54.
    Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Parikh K, Chandra P, Choksi N, Khanna P, Chambers J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013;81(7):1134–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Pinto DS, Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, et al. Impact of routine angiographic follow-up on the clinical benefits of paclitaxel-eluting stents: results from the TAXUS-IV trial. J Am Coll Cardiol. 2006;48(1):32–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303(16):1610–6.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang I-K, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401–15.CrossRefPubMedGoogle Scholar
  59. 59.
    Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.CrossRefPubMedGoogle Scholar
  61. 61.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):188–97.CrossRefPubMedGoogle Scholar
  62. 62.
    Schiavetta A, Maione C, Botti C, Marino G, Lillo S, Garrone A, et al. A phase II trial of autologous transplantation of bone marrow stem cells for critical limb ischemia: results of the Naples and Pietra Ligure Evaluation of Stem Cells study. Stem Cells Transl Med. 2012;1(7):572–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schlüter M, Cosgrave J, Tübler T, Melzi G, Colombo A, Schofer J. Rotational atherectomy to enable sorolimus-eluting stent implantation in calcified, nondilatable de novo coronary artery lesions. Vasc Dis Manag. 2007;4(3):63–9.Google Scholar
  64. 64.
    Serruys PW, van Hout B, Bonnier H, Legrand V, Garcia E, Macaya C, et al. Randomised comparison of implantation of heparin-coated stents with balloon angioplasty in selected patients with coronary artery disease (Benestent II). Lancet. 1998;352(9129):673–81.CrossRefPubMedGoogle Scholar
  65. 65.
    Shlofmitz RA. Treatment of severely calcified coronary lesions with the Coronary Orbital Atherectomy System Micro Crown: early results from the COAST study. Cardiovascular Research Technologies (CRT) Conference. Washington, DC; 2016.Google Scholar
  66. 66.
    Shlofmitz E, Chambers J, Moses JW, Martinsen B, Meraj P, Jauhar R, et al. TCT-389 temporary pacemaker placement incidence with the Diamondback 360® Coronary Orbital Atherectomy System compared to rotational atherectomy. J Am Coll Cardiol. 2015;66(15, Supplement):B157.CrossRefGoogle Scholar
  67. 67.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.CrossRefPubMedGoogle Scholar
  68. 68.
    Terashima M, Kaneda H, Suzuki T. The role of optical coherence tomography in coronary intervention. Korean J Intern Med. 2012;27(1):1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Werner C. The older population: 2010. U.S. Census Brief C201BR-09. 2011. Available from: https://www.census.gov/prod/cen2010/briefs/c2010br-09.pdf.
  70. 70.
    Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation. 1996 Sep 1;94(5):1175–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael S. Lee
    • 1
  • Brad J. Martinsen
    • 2
  • Richard Shlofmitz
    • 3
  • Jeffrey W. Chambers
    • 4
  1. 1.UCLA Medical CenterLos AngelesUSA
  2. 2.Cardiovascular Systems, Inc.St. PaulUSA
  3. 3.Department of CardiologySt. Francis HospitalRoslynUSA
  4. 4.Metropolitan Heart and Vascular Institute, Mercy HospitalMinneapolisUSA

Personalised recommendations