Cognitive Skills in Catheter-Based Cardiovascular Interventions

  • Peter LanzerEmail author


Despite 50-plus years’ history of catheter-based cardiovascular intervention (CBCVI), surprisingly little has been learned about the cognitive nature of interventional skills. Thus, learning, teaching, and practice of CBCVI has remained largely based on traditional principles of empiricism associated with mentoring and apprenticeship. In this chapter, a cognitive approach to knowledge transfer in CBCVI is reviewed and discussed.


  1. 1.
    Korn H, Faber DS. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron. 2005;47:13–28.CrossRefPubMedGoogle Scholar
  2. 2.
    Sonnenborg FA, Andersen OK, Arendt-Nielsen L, Treede RD. Withdrawal reflex organization to electrical stimulation of the dorsal foot in humans. Exp Brain Res. 2001;136:303–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Guthrie WKC. A history of Greek philosophy, vol. I; The earlier Presocratics and the Pythagoreans; Cambridge: Cambridge University Press; 2010 (revised 1962 edition); Guthrie WKC. A history of Greek philosophy, vol. II; The Presocratic tradition from Parmenides to Democritus; Cambridge: Cambridge University Press; 2003 (revised edition).Google Scholar
  4. 4.
    The complete works of Aristotle. The revised Oxford translation (J. Barnes, ed.), Volume 2. Bollingen Series LXXI.2, Princeton: Princeton University Press; Nicomachean Ethics, Magna moralia, Eudemian Ethics; p. 1729–981; 1984.Google Scholar
  5. 5.
    Gilson E. The spirit of medieval philosophy. London: Sheed & Ward; 1936.Google Scholar
  6. 6.
    Cassirer E. The philosophy of enlightment. Princeton: Princeton University Press; 1951.Google Scholar
  7. 7.
    Finger S. Origins of neuroscience. Oxford: Oxford University Press; 1994.Google Scholar
  8. 8.
    Sternberg RJ, Sternberg K. Cognitive psychology. Belmont: Wadsworth; 2016.Google Scholar
  9. 9.
    Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principals of neural science. 5th ed. New York: The McGraw-Hill Companies; 2013.Google Scholar
  10. 10.
    Neisser U. Cognitive psychology. Englewood Cliffs: Prentice Hall; 1967.Google Scholar
  11. 11.
    Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63:81–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Carroll JB. Human cognitive abilities; a survey of factor-analytic studies. Cambridge: Cambridge University Press; 1993.CrossRefGoogle Scholar
  13. 13.
    Anderson JR. The architecture of cognition. Cambridge: Harvard University Press; 1983.Google Scholar
  14. 14.
    Anderson JR. How can the human mind occur in the physical universe? Oxford: Oxford University Press; 2007.CrossRefGoogle Scholar
  15. 15.
    Stanovich KE. Rationality & the reflective mind. Oxford: Oxford University Press; 2011.Google Scholar
  16. 16.
    Leslie AM. Pretense and representation: the origins of “theory of mind”. Psychol Rev. 1987;94:412–26.CrossRefGoogle Scholar
  17. 17.
    Perner I. Understanding the representational mind. Cambridge: MIT Press; 1991.Google Scholar
  18. 18.
    Stanovich KE. Distinguishing the reflective, algorithmic, and autonomous minds: is it time for a tri-process theory? In: Evans J, Frankisch K, editors. In two minds; dual process and beyond. Oxford: Oxford University Press; 2008.Google Scholar
  19. 19.
    Stanovich KE. The robot’s rebellion: finding meaning in the age of Darwin. Chicago: University of Chicago Press; 2004.CrossRefGoogle Scholar
  20. 20.
    Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tononi G, Koch C. Consciousness: here, there and anywhere? Philos Trans R Soc Lond B Biol Sci. 2015;370(1668). pii: 20140167.
  22. 22.
    Tononi G, Boly M, Massimini M, Koch C. Integrated information theory: from consciousness to its physical substrate. Nat Rev Neurosci. 2016;17:450–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Metzler T, Shea K. Taxonomy of cognitive functions. International conference on engineering design. ICED. 2011;1:15–8.Google Scholar
  24. 24.
    Gläscher J, Adolphs R, Damasio H, Bechara A, Rudrauf D, Calamia M, Paul LK, Tranel D. Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc Natl Acad Sci U S A. 2012;109(36):14681–6. Scholar
  25. 25.
    Broche-Perez Y, Herrera-Jimenez LF, Omar-Martinez E. Neural substrates of decision-making. Neurologia. 2016;31:319–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Fermat and Pascal on probability. 1654. Accessed 12 Nov 2016.
  27. 27.
    Bayes T. An essay toward solving a problem in the doctrine of chances. Philos Trans Essay LII:370–418; 1763. Communicated in a letter by Richard Price to John Canton, November 10, 1763. Accessed 12 Nov 2016.
  28. 28.
    Bernouilli D. Exposition of a new theory on the measurement of risk. Econometrica. 1954;22:23–36. (translation from Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, Tomus V,1738:175–192CrossRefGoogle Scholar
  29. 29.
    Hájek A. Interpretations of probability, In: Edward N. Zalta, editor. The Stanford Encyclopedia of Philosophy (Winter 2012 Edition),
  30. 30.
    Kolmogorov AN. Foundations of the theory of probability. Eastword: Martino Fine Books; 2013.Google Scholar
  31. 31.
    Rubinstein RY, Kroese DP. Simulation and the Monte Carlo method. 3rd ed. Hoboken: Wiley; 2016.CrossRefGoogle Scholar
  32. 32.
    Sanchez E, Zadeh LA, editors. Approximate reasoning in intelligent systems, decision and control. Oxford: Pergamon; 2014.Google Scholar
  33. 33.
    Wang P. Non-axiomatic logic; a model of intelligent reasoning. Singapore: World Scientific; 2013.CrossRefGoogle Scholar
  34. 34.
    Mode CJ, editor. Applications of Monte Carlo methods in biology, medicine and other fields of science. Rijeka: InTech; 2011.Google Scholar
  35. 35.
    Savage LJ. The foundations of statistics. New York: Wiley; 1954.Google Scholar
  36. 36.
    Simon HA. Rational choice and the structure of the environment. Psychol Rev. 1956;63:129–38.CrossRefPubMedGoogle Scholar
  37. 37.
    Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica. 1979;47:263–91.CrossRefGoogle Scholar
  38. 38.
    Kahneman D, Slovic P, Tversky A, editors. Judgment under uncertainty: heuristics and biases. New York: Cambridge University Press; 1982.Google Scholar
  39. 39.
    Gigerenzer G, Todd PM, ABC Research Group. Simple heuristics that make us smart. New York: Oxford University Press; 1999.Google Scholar
  40. 40.
    Gigerenzer G, Hertwig R, Pachur T, editors. Heuristics: the foundations of adaptive behavior. Oxford: Oxford University Press; 2011.Google Scholar
  41. 41.
    Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007;30:535–74.CrossRefPubMedGoogle Scholar
  42. 42.
    List of biases. Accessed 17 Nov 2016.
  43. 43.
    Reason J. Human error. Cambridge: Cambridge University Press; 1990.CrossRefGoogle Scholar
  44. 44.
    Kohn LT, Corrigan JM, Donaldson MS Eds. Committee of Quality of Health Care in America, Institute of Medicine (2001). To err is human: building a safer health system. Washington, DC: National Academies Press; 2000.Google Scholar
  45. 45.
    Sherman H, Loeb J (for Joint Commission on Accreditation of Healthcare Organizations, WHO Consultants) (2005). The World Health Organization Alliance for Patient Safety. World Health Organization. Accessed 17 Nov 2016.
  46. 46.
    Landrigan CP, Parry GJ, Bones CB, Hackbarth AD, Goldmann DA, Sharek PJ. Temporal trends in rates of patient harm resulting from medical care. N Engl J Med. 2010;363:2124–34.CrossRefPubMedGoogle Scholar
  47. 47.
    Arnauld A, Nicole P. Logic or the art of thinking. Melbourne: Cambridge University Press; 1996, reprint. p. 274–5.CrossRefGoogle Scholar
  48. 48.
    Ebbinghaus H. Über das Gedächtnis: Untersuchungen zur experimentellen Psychologie. Leipzig: Duncker & Humblot; 1885.Google Scholar
  49. 49.
    Bloom BS, editor. Taxonomy of educational objectives, the classification of educational goals—Handbook I: Cognitive Domain. New York: McKay; 1956.Google Scholar
  50. 50.
    Medin DL, Shanks DR, Holoyak KJ, editors. Causal learning. London: Academic Press; 2011.Google Scholar
  51. 51.
    Cannon-Bowers J, Bowers C, Stout R, Ricci K, Hildabrand A. Using cognitive task analysis to develop simulation-based training for medical tasks. Mil Med. 2013;178(10 Suppl):15–21.CrossRefPubMedGoogle Scholar
  52. 52.
    Schraagen JM. Task analysis. In: Ericsson KA, Charness N, Feltovich PJ, Hoffman RR, editors. The Cambridge handbook of expertise and expert performance. Cambridge: Cambridge University Press; 2006. p. 185–201.CrossRefGoogle Scholar
  53. 53.
    Lanzer P, Prechelt L. Expanding the base for teaching of percutaneous coronary interventions; the explicit approach. Cathet Cardiovasc Intervent. 2011;77:372–80.CrossRefGoogle Scholar
  54. 54.
    Prechelt L, Lanzer P. On understanding the power of judgment in percutaneous coronary interventions. Clin Res Cardiol. 2007;96:1–5.CrossRefGoogle Scholar
  55. 55.
    Kahneman D. Thinking, fast and slow. London: Pinquin Books; 2011.Google Scholar
  56. 56.
    Klein G. Sources of power: how people make decisions. Cambridge: MIT Press; 1999.Google Scholar
  57. 57.
    Kahneman D, Klein G. Conditions for intuitive expertise: a failure to disagree. Am Psychol. 2009;64:515–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Lanzer P, Wang P. On the logic of percutaneous coronary interventions. Int J Clin Cardiol. 2015;2:3. ISSN: 2378–2951.Google Scholar
  59. 59.
    Lanzer P, Villringer A. Cognitive approach to teaching percutaneous coronary interventions. CardioPulse 35:2434–35.Google Scholar
  60. 60.
    Lanzer P, Al-Naser M, Bukhari SS, Dengel A, Krupinski EA. Eye tracking in catheter-based cardiovascular interventions: Early results. J Med Imag. 2017;4(3):035502.doi:10.1117/1.JMI.4.3.035502. Epub 2017 Aug 4.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Atkinson MJ, Hass SL. “Global satisfaction” scale of the Treatment Satisfaction Questionnaire for Medication (TSQM): the mean scale score for the “global satisfaction” items on the TSQM (version II). Accessed 19 Nov 2016.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Middle German Heart CenterHealth Care Center Bitterfeld-Wolfen gGmbHBitterfeld-WolfenGermany

Personalised recommendations