A Cognitive Neuroscience Perspective on Skill Acquisition in Catheter-Based Interventions

  • Katja Isabel PaulEmail author
  • Fokie Cnossen


Catheter-based cardiovascular interventions (CBCVI) provide a fascinating context to study skill acquisition. In CBCVI, multiple cognitive skills are crucial; technical, perceptual, and decision-making skills are all used at the same time and often depend on each other. In order to be able to develop and implement the best possible medical education curriculum, it is important to understand cognition. Cognitive neuroscience studies the relationship between cognitive functions and brain processes. Recently, new techniques have become available that allow study of how learning changes specific brain structures and the connections between different brain areas. This chapter gives an overview of these studies. It also discusses the process of skill acquisition and the two types of knowledge on which learning is based: declarative knowledge (know what) and procedural knowledge (know how). These different types of knowledge have different representations and different properties. We discuss how changes in gray and white matter can be measured using different structural magnetic resonance imaging techniques, and describe experimental studies on brain plasticity in declarative and procedural learning and skill acquisition.


  1. 1.
    Cnossen F. Cognitive skills in medicine: an introduction. In: Lanzer P, editor. PanVascular medicine, 2nd ed. Berlin: Springer; 2015. p. 4719–52.CrossRefGoogle Scholar
  2. 2.
    Lanzer P, Taatgen N. Procedural knowledge in percutaneous coronary interventions. J Clin Exp Cardiol. 2013;4 Suppl 6:e005. doi: 10.4172/2155-9880.S6-005.
  3. 3.
    Anderson JR. Acquisition of cognitive skill. Psychol Rev. 1982;89(4):369–406.CrossRefGoogle Scholar
  4. 4.
    Fitts PM. Perceptual-motor skill learning. In: Melton AW, editor. Categories of human learning. New York: Academic Press; 1964. p. 243–85.CrossRefGoogle Scholar
  5. 5.
    Lustig C, Shah P, Seidler R, Reuter-Lorenz PA. Aging, training, and the brain: a review and future directions. Neuropsychol Rev. 2009;19(4):504–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chang Y. Reorganization and plastic changes of the human brain associated with skill learning and expertise. Front Hum Neurosci. 2014;8(1):35.Google Scholar
  7. 7.
    Draganski B, Gaser C, Kempermann G, Georg Kuhn H, Winkler J, Büchel C, May A. Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci. 2006;26(23):6314–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Mackey AP, Whitaker KJ, Bunge SA. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity. Front Neuroanat. 2012;6:32. doi: 10.3389/fnana.2012.00032.
  9. 9.
    Taubert M, Villringer A, Ragert P. Learning-related gray and white matter changes in humans an update. Neuroscientist. 2012;18(4):320–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Robert J, Zatorre R. Douglas Fields, and Heidi Johansen-Berg. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15(4):528–36.CrossRefGoogle Scholar
  11. 11.
    Lakhani B, Borich MR, Jackson JN, Wadden KP, Peters S, Villamayor A, MacKay AL, Vavasour IM, Rauscher A, Boyd LA. Motor skill acquisition promotes human brain myelin plasticity. Neural Plast. 2016;2016:7526135. doi: 10.1155/2016/7526135.CrossRefGoogle Scholar
  12. 12.
    Markham JA, Herting MM, Luszpak AE, Juraska JM, Greenough WT. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood. Brain Res. 2009;1288:9–17.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nave K-A. Myelination and support of axonal integrity by glia. Nature. 2010;468(7321):244–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009;12(11):1370–1.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Taubert M, Draganski B, Anwander A, Müller K, Horstmann A, Villringer A, Ragert P. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010;30(35):11670–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Johansen-Berg H, Baptista CS, Thomas AG. Human structural plasticity at record speed. Neuron. 2012;73(6):1058–60.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci. 2000;97(8):4398–403.CrossRefPubMedGoogle Scholar
  18. 18.
    Paola M, Caltagirone C, Petrosini L. Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe. Hum Brain Mapp. 2013;34(10):2707–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44(1):109–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P. Long-term effects of motor training on resting-state networks and underlying brain structure. NeuroImage. 2011;57(4):1492–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–203.CrossRefPubMedGoogle Scholar
  22. 22.
    Peigneux P, Laureys S, Delbeuck X, Maquet P. Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport. 2001;12(18):A111–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del Fiore G, Aerts J, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron. 2004;44(3):535–45.CrossRefPubMedGoogle Scholar
  24. 24.
    Palchykova S, Winsky-Sommerer R, Meerlo P, Dürr R, Tobler I. Sleep deprivation impairs object recognition in mice. Neurobiol Learn Mem. 2006;85(3):263–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Artificial Intelligence & Cognitive Engineering and Max-Planck Institute for Human Cognitive and Brain SciencesLeipzigThe Netherlands
  2. 2.Institute of Artificial Intelligence & Cognitive EngineeringGroningenThe Netherlands

Personalised recommendations