Robotic Percutaneous Coronary Intervention

  • Mark E. JacobyEmail author
  • Manivannan Veerasamy
  • Ryan D. Madder


A robotic system for performing percutaneous coronary intervention (PCI) is now clinically available. The system consists of a bedside robotic arm, a disposable cassette, and a lead-lined cockpit that houses the robotic controls. Robotic PCI allows operators to perform the PCI from a seated position from within the cockpit. Robotic PCI is associated with high technical and procedural success rates, and has been demonstrated to reduce physician radiation exposure by >95% when compared with manual PCI. Additionally, robotic PCI eliminates the need for the physician operator to wear traditional lead apparel, and thus robotic PCI has the potential to reduce the risk of orthopedic injury over time. Regarding potential patient benefits, the robotic system is capable of accurately measuring lesion length, which may reduce the risk of longitudinal geographic miss during PCI. This chapter provides an overview of robotic PCI, including a description of the robotic system, the benefits of robotic PCI, the current limitations of robotic PCI, and future applications of robotic technology in the catheterization laboratory.


Robotic PCI Radiation safety Orthopedic injury Longitudinal geographic miss Telestenting 





  1. 1.
    Goldstein JA, Balter S, Cowley M, Hodgson J, Klein LW. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63:407–11.CrossRefPubMedGoogle Scholar
  2. 2.
    Klein LW, Tra Y, Garratt KN, Powell W, Lopez-Cruz G, Chambers C, Goldstein JA. Occupational health hazards of interventional cardiologists in the current decade: results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv. 2015;86:913–24.CrossRefPubMedGoogle Scholar
  3. 3.
    Ross AM, Segal J, Borenstein D, Jenkins E, Cho S. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79:68–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Andreassi MG, Piccaluga E, Guagliumi G, Del Greco M, Gaita F, Picano E. Occupational health risks in cardiac catheterization laboratory workers. Circ Cardiovasc Interv. 2016;9:e003273.PubMedGoogle Scholar
  5. 5.
    Orme NM, Rihal CS, Gulati R, Holmes DR, Lennon RJ, Lewis BR, McPhail IR, Thielen KR, Pislaru SV, Sandhu GS, Singh M. Occupational health hazards of working in the interventional laboratory. J Am Coll Cardiol. 2015;65:820–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174:490–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Andreassi MG, Piccaluga E, Gargani L, Sabatino L, Borghini A, Faita F, Bruno RM, Padovani R, Guagliumi G, Picano E. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation. J Am Coll Cardiol Intv. 2015;8:616–27.CrossRefGoogle Scholar
  9. 9.
    Andreassi MG, Cioppa A, Botto N, Joksic G, Manfredi S, Federici C, Ostojic M, Rubino P, Picano E. Somatic DNA damage in interventional cardiologists: a case–control study. FASEB J. 2005;19:998–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Roguin A, Goldstein J, Bar O, Goldstein JA. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111:1368–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Beyar R, Wenderow T, Lindner D, Kumar G, Shofti R. Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. EuroIntervention. 2005;1:340–5.PubMedGoogle Scholar
  12. 12.
    Beyar R, Gruberg L, Deleanu D, Roguin A, Almagor Y, Cohen S, Kumar G, Wenderow T. Remote control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial. J Am Coll Cardiol. 2006;47:296–300.CrossRefPubMedGoogle Scholar
  13. 13.
    Granada JF, Delgado JA, Uribe MP, Fernandez A, Blanco G, Leon MB, Weisz G. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. J Am Coll Cardiol Intv. 2011;4:460–5.CrossRefGoogle Scholar
  14. 14.
    Weisz G, Metzger C, Caputo RP, Delgado JA, Marshall JJ, Vetrovec GW, Reisman M, Waksman R, Granada JF, Novack V, Moses JW, Carrozza JP. Safety and feasibility of robotic percutaneous coronary intervention. J Am Coll Cardiol. 2013;61:1596–600.CrossRefPubMedGoogle Scholar
  15. 15.
    Madder RD, VanOosterhout S, Mulder A, Elmore M, Campbell J, Borgman A, Parker J, Wohns D. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention. Cardiovasc Revasc Med. 2017;18(3):190–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Campbell PT, Mahmud E, Marshall JJ. Interoperator and intraoperator (in)accuracy of stent selection based on visual estimation. Catheter Cardiovasc Interv. 2015;86:1177–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Campbell PT, Kruse KR, Kroll CR, Patterson JY, Esposito MJ. The impact of precise robotic lesion length measurement on stent length selection: ramifications for stent savings. Cardiovasc Revasc Med. 2015;16:348–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Costa MA, Angiolillo DJ, Tannenbaum M, Driesman M, Chu A, Patterson J, Kuehl W, Battaglia J. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents. Am J Cardiol. 2008;101:1704–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Mauri L, O’Malley AJ, Cutlip DE, Ho KKL, Popma JJ, Chauhan MS, Baim DS, Cohen DJ, Kuntz RE. Effects of stent length and lesion length on coronary restenosis. Am J Cardiol. 2004;93:1340–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Bezerra HG, Mehanna E, Vetrovec GW, Costa MA, Weisz G. Longitudinal geographic miss in robotic assisted versus manual percutaneous coronary interventions. J Interv Cardiol. 2015;28:449–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Kapur V, Smilowitz NR, Weisz G. Complex robotic-enhanced percutaneous coronary intervention. Catheter Cardiovasc Interv. 2014;83:915–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Mahmud E, Dominguez A, Bahadorani J. First-in-human robotic percutaneous coronary intervention for unprotected left main stenosis. Catheter Cardiovasc Interv. 2016;88:565–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Madder RD, VanOosterhout SM, Jacoby ME, Collins JS, Borgman AS, Mulder AN, Elmore MA, Campbell JL, McNamara RF, Wohns DH. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting. EuroIntervention. 2017;12:1569–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Schwamm LH, Chumbler N, Brown E, Berube D, Nystrom K, Suter R, Zavala M, Polsky D, Radhakrishnan K, Lacktman N, Horton K, Malcarney MB, Halamka J, Tiner AC. Recommendations for the implementation of telehealth in cardiovascular and stroke care: a policy statement from the American Heart Association. Circulation. 2017;135:e24–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:487–92.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Anvari M, McKinley C, Stein H. Establishment of the world’s first telerobotic remote surgical service. Ann Surg. 2005;241:460–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Concannon TW, Nelson J, Goetz J, Griffith JL. A percutaneous coronary intervention lab in every hospital? Circ Cardiovasc Qual Outcomes. 2012;5:14–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang TY, Peterson ED, Ou F, Nallamothu BK, Rumsfeld JS, Roe MT. Door-to-balloon times for patients with ST-segment elevation myocardial infarction requiring interhospital transfer for primary percutaneous coronary intervention: a report from the National Cardiovascular Data Registry. Am Heart J. 2011;161:76–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Guerchicoff A, Brener SJ, Maehara A, Witzenbichler B, Fahy M, Xu K, Gersh BJ, Mehran R, Gibson CM, Stone GW. Impact of delay to reperfusion on reperfusion success, infarct size, and clinical outcomes in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2014;7:733–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mark E. Jacoby
    • 1
    Email author
  • Manivannan Veerasamy
    • 1
  • Ryan D. Madder
    • 1
  1. 1.Frederik Meijer Heart & Vascular Institute Spectrum HealthGrand RapidsUSA

Personalised recommendations