Enrichment and Detection of Circulating Tumor Cells and Other Rare Cell Populations by Microfluidic Filtration

  • Michael PugiaEmail author
  • Mark Jesus M. Magbanua
  • John W. Park
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 994)


The current standard methods for isolating circulating tumor cells (CTCs) from blood involve EPCAM-based immunomagnetic approaches. A major disadvantage of these strategies is that CTCs with low EPCAM expression will be missed. Isolation by size using filter membranes circumvents the reliance on this cell surface marker, and can facilitate the capture not only of EPCAM-negative CTCs but other rare cells as well. These cells that are trapped on the filter membrane can be characterized by immunocytochemistry (ICC) , enumerated and profiled to elucidate their clinical significance. In this chapter, we discuss advances in filtration systems to capture rare cells as well as downstream ICC methods to detect and identify these cells. We highlight our recent clinical study demonstrating the feasibility of using a novel method consisting of automated microfluidic filtration and sequential ICC for detection and enumeration of CTCs, as well as circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis of circulating rare cells in blood of cancer patients may lead to a better understanding of disease progression and development of resistance to therapy.


Circulating tumor cells Circulating mesenchymal cells Circulating endothelial cells Circulating stem cells Filtration Immunocytochemistry Filter membranes 



We acknowledge the research contributions by colleagues at Siemens Healthcare Diagnostics, namely, Mary Foltz, Karen Marfurt, Cathleen Hanau-Taylor, Julia Philps. We thank Jin Sun Lee, Marc Jabon, Victoria Wang, Matthew Gubens, and Hope S. Rugo at the University of California San Francisco for their assistance in the clinical work. MJM was supported in part by the Breast Cancer Research Foundation. 


  1. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631CrossRefPubMedGoogle Scholar
  2. Balic M, Lin H, Williams A et al (2012) Progress in circulating tumor cell capture and analysis: implications for cancer management. Expert Rev Mol Diagn 12(3):303–312CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beerepoot LV, Mehra N, Vermaat JS et al (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15(1):139–145CrossRefPubMedGoogle Scholar
  4. Bidard FC, Mathiot C, Degeorges A et al (2010) Clinical value of circulating endothelial cells and circulating tumor cells in metastatic breast cancer patients treated first line with bevacizumab and chemotherapy. Ann Oncol 21(9):1765–1771CrossRefPubMedGoogle Scholar
  5. Boos CJ, Lip GY, Blann AD (2006) Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol 48(8):1538–1547CrossRefPubMedGoogle Scholar
  6. Boyle JM, Grzeschik KH, Heath PR et al (1990) Trophoblast glycoprotein recognised by monoclonal antibody 5T4 maps to human chromosome 6q14-q15. Hum Genet 84(5):455–458CrossRefPubMedGoogle Scholar
  7. Calleri A, Bono A, Bagnardi V et al (2009) Predictive potential of Angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin Cancer Res 15(24):7652–7657CrossRefPubMedGoogle Scholar
  8. Chen L, Shen R, Ye Y et al (2007) Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS One 2(3):e293CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chudziak J, Burt DJ, Mohan S et al (2016) Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst 141(2):669–678CrossRefPubMedGoogle Scholar
  10. Coumans FA, van Dalum G, Beck M et al (2013a) Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4):e61770CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coumans FA, van Dalum G, Beck M et al (2013b) Filtration parameters influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4):e61774CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cummings J, Sloane R, Morris K et al (2014) Optimisation of an immunohistochemistry method for the determination of androgen receptor expression levels in circulating tumour cells. BMC Cancer 14:226CrossRefPubMedPubMedCentralGoogle Scholar
  13. Damani S, Bacconi A, Libiger O et al (2012) Characterization of circulating endothelial cells in acute myocardial infarction. Sci Transl Med 4(126):126ra133CrossRefGoogle Scholar
  14. Damelin M, Geles KG, Follettie MT et al (2011) Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumor-initiating cells. Cancer Res 71(12):4236–4246CrossRefPubMedGoogle Scholar
  15. de Wit S, van Dalum G, Lenferink AT et al (2015) The detection of EpCAM(+) and EpCAM(−) circulating tumor cells. Sci Rep 5:12270CrossRefPubMedPubMedCentralGoogle Scholar
  16. Desitter I, Guerrouahen BS, Benali-Furet N et al (2011) A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res 31(2):427–441PubMedGoogle Scholar
  17. El-Heliebi A, Kroneis T, Zohrer E et al (2013) Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med 11:214CrossRefPubMedPubMedCentralGoogle Scholar
  18. Farace F, Massard C, Vimond N et al (2011) A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer 105(6):847–853CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gao JX (2008) Cancer stem cells: the lessons from pre-cancerous stem cells. J Cell Mol Med 12(1):67–96CrossRefPubMedGoogle Scholar
  20. Hofman V, Bonnetaud C, Ilie MI et al (2011) Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res 17(4):827–835CrossRefPubMedGoogle Scholar
  21. Hofman V, Long E, Ilie M et al (2012) Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method. Cytopathology 23(1):30–38CrossRefPubMedGoogle Scholar
  22. Huang T, Jia CP, Jun Y et al (2014) Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens Bioelectron 51:213–218CrossRefPubMedGoogle Scholar
  23. Hyun KA, Koo GB, Han H et al (2016) Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget 7(17):24677–24687PubMedPubMedCentralGoogle Scholar
  24. Ilie M, Long E, Hofman V et al (2014) Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 110(5):1236–1243CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jackson JM, Witek MA, Hupert ML et al (2014) UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip 14(1):106–117CrossRefPubMedPubMedCentralGoogle Scholar
  26. Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kasimir-Bauer S, Hoffmann O, Wallwiener D et al (2012) Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 14(1):R15CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lecharpentier A, Vielh P, Perez-Moreno P et al (2011) Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer 105(9):1338–1341CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee JH, Jung C, Javadian-Elyaderani P et al (2010) Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Cancer Res 70(11):4569–4579CrossRefPubMedGoogle Scholar
  30. Ligthart ST, Coumans FA, Bidard FC et al (2013) Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS One 8(6):e67148CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu JJ, Shen R, Chen L et al (2010) Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker. Int J Clin Exp Pathol 3(4):328–337PubMedPubMedCentralGoogle Scholar
  32. Lopez M, San Roman J, Estrada V et al (2012) Endothelial dysfunction in HIV infection--the role of circulating endothelial cells, microparticles, endothelial progenitor cells and macrophages. AIDS Rev 14(4):223–230PubMedGoogle Scholar
  33. Magbanua MJ, Park JW (2014) Advances in genomic characterization of circulating tumor cells. Cancer Metastasis Rev 33(2–3):757–769CrossRefPubMedGoogle Scholar
  34. Magbanua MJ, Pugia M, Lee JS et al (2015) A novel strategy for detection and enumeration of circulating rare cell populations in metastatic cancer patients using automated microfluidic filtration and multiplex immunoassay. PLoS One 10(10):e0141166CrossRefPubMedPubMedCentralGoogle Scholar
  35. McFaul SM, Lin BK, Ma H (2012) Cell separation based on size and deformability using microfluidic funnel ratchets. Lab Chip 12(13):2369–2376CrossRefPubMedGoogle Scholar
  36. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338–344CrossRefPubMedGoogle Scholar
  37. Mehran R, Nilsson M, Khajavi M et al (2014) Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy. Cancer Res 74(10):2731–2741CrossRefPubMedPubMedCentralGoogle Scholar
  38. Naganuma H, Kono K, Mori Y et al (2002) Oncofetal antigen 5T4 expression as a prognostic factor in patients with gastric cancer. Anticancer Res 22(2B):1033–1038PubMedGoogle Scholar
  39. O’Flaherty JD, Barr M, Fennell D et al (2012) The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol 7(12):1880–1890CrossRefPubMedGoogle Scholar
  40. Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra147CrossRefGoogle Scholar
  41. Pugia MJ, Blankenstein G, Peters RP et al (2005) Microfluidic tool box as technology platform for hand-held diagnostics. Clin Chem 51(10):1923–1932CrossRefPubMedGoogle Scholar
  42. Qiao D, Zeeman AM, Deng W et al (2002) Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 21(25):3988–3999CrossRefPubMedGoogle Scholar
  43. Ronzoni M, Manzoni M, Mariucci S et al (2010) Circulating endothelial cells and endothelial progenitors as predictive markers of clinical response to bevacizumab-based first-line treatment in advanced colorectal cancer patients. Ann Oncol 21(12):2382–2389CrossRefPubMedGoogle Scholar
  44. Rowand JL, Martin G, Doyle GV et al (2007) Endothelial cells in peripheral blood of healthy subjects and patients with metastatic carcinomas. Cytometry A 71(2):105–113CrossRefPubMedGoogle Scholar
  45. Sapra P, Damelin M, Dijoseph J et al (2013) Long-term tumor regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol Cancer Ther 12(1):38–47CrossRefPubMedGoogle Scholar
  46. Satelli A, Mitra A, Brownlee Z et al (2015) Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res 21(4):899–906CrossRefPubMedGoogle Scholar
  47. Seal SH (1964) A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 17:637–642CrossRefPubMedGoogle Scholar
  48. Sieuwerts AM, Kraan J, Bolt J et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101(1):61–66CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sollier E, Go DE, Che J et al (2014) Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14(1):63–77CrossRefPubMedGoogle Scholar
  50. Starzynska T, Marsh PJ, Schofield PF et al (1994) Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer 69(5):899–902CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sterlacci W, Savic S, Fiegl M et al (2014) Putative stem cell markers in non-small-cell lung cancer: a clinicopathologic characterization. J Thorac Oncol 9(1):41–49CrossRefPubMedGoogle Scholar
  52. Thege FI, Lannin TB, Saha TN et al (2014) Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Lab Chip 14(10):1775–1784CrossRefPubMedGoogle Scholar
  53. Theodoropoulos PA, Polioudaki H, Agelaki S et al (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288(1):99–106CrossRefPubMedGoogle Scholar
  54. Vona G, Sabile A, Louha M et al (2000) Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol 156(1):57–63CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang G, Achim CL, Hamilton RL et al (1999) Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy. Methods 18(4):459–464CrossRefPubMedGoogle Scholar
  56. Williams A, Chung J, Ou X et al (2014) Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. J Biomed Opt 19(6):066007CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wrigley E, McGown AT, Rennison J et al (1995) 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer 5(4):269–274CrossRefPubMedGoogle Scholar
  58. Yokobori T, Iinuma H, Shimamura T et al (2013) Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res 73(7):2059–2069CrossRefPubMedGoogle Scholar
  59. Zhang H, Ren Y, Xu H et al (2013) The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 22(4):217–223CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Pugia
    • 1
    Email author
  • Mark Jesus M. Magbanua
    • 2
  • John W. Park
    • 2
  1. 1.Siemens Healthcare DiagnosticsElkhartUSA
  2. 2.Division of Hematology & OncologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations