The Smoothed Number of Pareto-Optimal Solutions in Non-integer Bicriteria Optimization

  • Heiko Röglin
  • Clemens RösnerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10185)


Pareto-optimal solutions are one of the most important and well-studied solution concepts in multi-objective optimization. Often the enumeration of all Pareto-optimal solutions is used to filter out unreasonable trade-offs between different criteria. While in practice, often only few Pareto-optimal solutions are observed, for almost every problem with at least two objectives there exist instances with an exponential number of Pareto-optimal solutions. To reconcile theory and practice, the number of Pareto-optimal solutions has been analyzed in the framework of smoothed analysis, and it has been shown that the expected value of this number is polynomially bounded for linear integer optimization problems. In this paper we make the first step towards extending the existing results to non-integer optimization problems. Furthermore, we improve the previously known analysis of the smoothed number of Pareto-optimal solutions in bicriteria integer optimization slightly to match its known lower bound.


  1. 1.
    Beier, R., Röglin, H., Vöcking, B.: The smoothed number of pareto optimal solutions in bicriteria integer optimization. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 53–67. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72792-7_5 CrossRefGoogle Scholar
  2. 2.
    Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. J. Comput. Syst. Sci. 69(3), 306–329 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brunsch, T., Goyal, N., Rademacher, L., Röglin, H.: Lower bounds for the average and smoothed number of pareto-optima. Theory Comput. 10(10), 237–256 (2014)Google Scholar
  4. 4.
    Brunsch, T., Röglin, H.: Improved smoothed analysis of multiobjective optimization. J. ACM 62(1), 4 (2015)Google Scholar
  5. 5.
    Corley, H., Moon, I.: Shortest paths in networks with vector weights. J. Optim. Theor. Appl. 46(1), 7986 (1985)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ehrgott, M.: Integer solutions of multicriteria network flow problems. Investigacao Operacional 19, 61–73 (1999)Google Scholar
  7. 7.
    Ehrgott, M., Gandibleux, X.: Multiple criteria optimization. In: Multiobjective Combinatorial Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 491. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Klamroth, K., Wiecek, M.M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Res. Logistics 47(1), 57–76 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Moitra, A., O’Donnel, R.: Pareto optimal solutions for smoothed analysts. SIAM J. Comput. 41(5), 1266–1284 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–197. Springer, Heidelberg (2001). doi: 10.1007/3-540-44688-5_15 CrossRefGoogle Scholar
  11. 11.
    Mustafa, A., Goh, M.: Finding integer efficient solutions for bicriteria and tricriteria network flow problems using DINAS. Comput. Oper. Res. 25(2), 139–157 (1998)Google Scholar
  12. 12.
    Nemhauser, G.L., Ullmann, Z.: Discrete dynamic programming and capital allocation. Manage. Sci. 15, 494–505 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Röglin, K., Teng, S.-H.: Smoothed analysis of multiobjective optimization. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 681–690 (2009)Google Scholar
  14. 14.
    Skriver, A.J.V., Andersen, K.A.: A label correcting approach for solving bicriterion shortest-path problems. Comput. Oper. Res. 27(6), 507524 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BonnBonnGermany

Personalised recommendations