Advertisement

Büchi Automata Recognizing Sets of Reals Definable in First-Order Logic with Addition and Order

  • Arthur Milchior
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10185)

Abstract

This work considers encodings of non-negative reals in a fixed base, and their encoding by weak deterministic Büchi automata. A Real Number Automaton is an automaton which recognizes all encodings of elements of a set of reals. We explain in this paper how to decide in linear time whether a set of reals recognized by a given minimal weak deterministic RNA is Open image in new window -definable. Furthermore, it is explained how to compute in quasi-quadratic (respectively, quasi-linear) time an existential (respectively, existential-universal) Open image in new window -formula which defines the set of reals recognized by the automaton.

As an additional contribution, the techniques used for obtaining our main result lead to a characterization of minimal deterministic Büchi automata accepting Open image in new window -definable set.

References

  1. 1.
    Alexeev, B.: Minimal dfas for testing divisibility. CoRR cs.CC/0309052 (2003), http://arxiv.org/abs/cs.CC/0309052
  2. 2.
    Boigelot, B., Brusten, J.: A generalization of cobham’s theorem to automata over real numbers. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 813–824. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73420-8_70 CrossRefGoogle Scholar
  3. 3.
    Boigelot, B., Brusten, J., Bruyère, V.: On the sets of real numbers recognized by finite automata in multiple bases. Logical Methods Comput. Sci. 6(1) (2010)Google Scholar
  4. 4.
    Boigelot, B., Brusten, J., Leroux, J.: A generalization of semenov’s theorem to automata over real numbers. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 469–484. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02959-2_34. https://hal.archives-ouvertes.fr/hal-00414753 CrossRefGoogle Scholar
  5. 5.
    Bruyre, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc 1, 191–238 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Math. Syst. Theo. 3(2), 186–192 (1969). http://dx.doi.org/10.1007/BF01746527
  7. 7.
    Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975). http://dx.doi.org/10.1137/0204006
  8. 8.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers (1960). http://opac.inria.fr/record=b1133956, autres tirages avec corrections : 1962, 1965, 1968, 1971, 1975
  9. 9.
    Honkala, J.: A decision method for the recognizability of sets defined by number systems. ITA 20(4), 395–403 (1986). http://dblp.uni-trier.de/db/journals/ita/ita20.html#Honkala86
  10. 10.
    Lacroix, A., Rampersad, N., Rigo, M., Vandomme, É.: Syntactic complexity of ultimately periodic sets of integers and application to a decision procedure. Fundam. Inform. 116(1–4), 175–187 (2012). http://dx.doi.org/10.3233/FI-2012-677
  11. 11.
    Leroux, J.: Least significant digit first Presburger automata. CoRR abs/cs/0612037 (2006)Google Scholar
  12. 12.
    Löding, C.: Efficient minimization of deterministic weak omega automata (2001)Google Scholar
  13. 13.
    Marsault, V., Sakarovitch, J.: Ultimate periodicity of b-recognisable sets: a quasilinear procedure. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 362–373. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38771-5_32 CrossRefGoogle Scholar
  14. 14.
    Muchnik, A.A.: The definable criterion for definability in Presburger arithmetic and its applications. Theor. Comput. Sci. 290(3), 1433–1444 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Semenov, A.L.: The presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18, 289–299 (1977)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). http://dx.doi.org/10.1137/0201010
  17. 17.
    Weispfenning, V.: Mixed real-integer linear quantifier elimination (1999)Google Scholar
  18. 18.
    Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic constraints. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 1–19. Springer, Heidelberg (2000). doi: 10.1007/3-540-46419-0_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LACLUniversité Paris-EstCréteilFrance

Personalised recommendations