On the Computational Complexity of Variants of Combinatorial Voter Control in Elections

  • Leon Kellerhals
  • Viatcheslav Korenwein
  • Philipp Zschoche
  • Robert Bredereck
  • Jiehua ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10185)


Voter control problems model situations in which an external agent tries to affect the result of an election by adding or deleting the fewest number of voters. The goal of the agent is to make a specific candidate either win (constructive control) or lose (destructive control) the election. We study the constructive and destructive voter control problems when adding and deleting voters have a combinatorial flavor: If we add (resp. delete) a voter v, we also add (resp. delete) a bundle \(\kappa (v) \) of voters that are associated with v. While the bundle \(\kappa (v)\) may have more than one voter, a voter may also be associated with more than one voter. We analyze the computational complexity of the four voter control problems for the Plurality rule.

We obtain that, in general, making a candidate lose is computationally easier than making her win. In particular, if the bundling relation is symmetric (i.e. \(\forall w:w \in \kappa (v) \Leftrightarrow v \in \kappa (w) \)), and if each voter has at most two voters associated with him, then destructive control is polynomial-time solvable while the constructive variant remains \(\mathsf {NP}\)-hard. Even if the bundles are disjoint (i.e. \(\forall w:w \in \kappa (v) \Leftrightarrow \kappa (v) = \kappa (w) \)), the constructive problem variants remain intractable. Finally, the minimization variant of constructive control by adding voters does not admit an efficient approximation algorithm, unless \(\mathsf {P}= \mathsf {NP}\).


  1. 1.
    Anstee, R.P.: An algorithmic proof of Tutte’s \(f\)-factor theorem. J. Algorithms 6(1), 112–131 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anstee, R.P.: Minimum vertex weighted deficiency of \((g, f)\)-factors: a greedy algorithm. Discrete Appl. Math. 44(1–3), 247–260 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bartholdi, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election? Math. Comput. Model. 16(8–9), 27–40 (1992)Google Scholar
  4. 4.
    Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. Theor. Comput. Sci. 410(52), 43–53 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational aspects of voting. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 318–363. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30891-8_16 CrossRefGoogle Scholar
  6. 6.
    Bredereck, R., Chen, J., Faliszewski, P., Guo, J., Niedermeier, R., Woeginger, G.J.: Parameterized algorithmics for computational social choice: nine research challenges. Tsinghua Sci. Technol. 19(4), 358–373 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bredereck, R., Faliszewski, P., Niedermeier, R., Talmon, N.: Large-scale election campaigns: combinatorial shift bribery. J. Artif. Intell. Res. 55, 603–652 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bulteau, L., Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Combinatorial voter control in elections. Theor. Comput. Sci. 589, 99–120 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, J.: Exploiting structure in computationally hard voting problems. Ph.D. thesis, Technische Universität Berlin (2016)Google Scholar
  10. 10.
    Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Elections with few voters: Candidate control can be easy. In: AAAI 2015, pp. 2045–2051 (2015)Google Scholar
  11. 11.
    Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, vol. 168. Cambridge University Press, New York (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Erdélyi, G., Fellows, M.R., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: a theoretical analysis. J. Comput. Syst. Sci. 81(4), 632–660 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, Chap. 7. Cambridge University Press, Cambridge (2016)Google Scholar
  15. 15.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. 35, 275–341 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Multimode control attacks on elections. J. Artif. Intell. Res. 40, 305–351 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Weighted electoral control. J. Artif. Intell. Res. 52, 507–542 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  19. 19.
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but him: the complexity of precluding an alternative. Artif. Intell. 171(5), 255–285 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hemaspaandra, L.A., Lavaee, R., Menton, C.: Schulze and ranked-pairs voting are fixed-parameter tractable to bribe, manipulate, and control. Ann. Math. Artif. Intell. 77(3–4), 191–223 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kellerhals, L., Korenwein, V., Zschoche, P., Bredereck, R., Chen, J.: On the computational complexity of variants of combinatorial voter control in elections. Technical report arXiv:1701.05108 [cs.MA]., January 2017
  22. 22.
    Liu, H., Zhu, D.: Parameterized complexity of control problems in Maximin election. Inf. Process. Lett. 110(10), 383–388 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of control problems in voting systems. Theor. Comput. Sci. 410(27–29), 2746–2753 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Procaccia, A.D., Rosenschein, J.S., Zohar, A.: Multi-winner elections: Complexity of manipulation, control and winner-determination. In: IJCAI 2007, pp. 1476–1481 (2007)Google Scholar
  26. 26.
    Rothe, J., Schend, L.: Challenges to complexity shields that are supposed to protect elections against manipulation and control: A survey. Ann. Math. Artif. Intell. 68(1–3), 161–193 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leon Kellerhals
    • 1
  • Viatcheslav Korenwein
    • 1
  • Philipp Zschoche
    • 1
  • Robert Bredereck
    • 1
  • Jiehua Chen
    • 1
    Email author
  1. 1.TU BerlinBerlinGermany

Personalised recommendations