The Strength of the SCT Criterion

  • Emanuele Frittaion
  • Silvia Steila
  • Keita Yokoyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10185)


We undertake the study of size-change analysis in the context of Reverse Mathematics. In particular, we prove that the SCT criterion [9, Theorem 4] is equivalent to \(\mathsf {I}\varSigma ^0_{2}\) over \(\mathsf {RCA_0}\).


Ramsey’s theorem for pairs Size-change termination Reverse Mathematics \(\varSigma ^0_2\)-induction 


  1. 1.
    Ben-Amram, A.M.: General Size-change termination and lexicographic descent. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 3–17. Springer, Heidelberg (2002). doi: 10.1007/3-540-36377-7_1 CrossRefGoogle Scholar
  2. 2.
    Codish, M., Genaim, S.: Proving termination one loop at a time. In: Mesnard, F., Serebrenik, A. (eds.) Proceedings of the 13th International Workshop on Logic Programming Environments, Tata Institute of Fundamental Research, Mumbai, India, 8 December 2003. Report, vol. CW371, pp. 48–59. Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001 Heverlee (Belgium) (2003)Google Scholar
  3. 3.
    Friedman, H.: Some systems of second order arithmetic and their use. In: Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), vol. 1, pp. 235–242 (1975)Google Scholar
  4. 4.
    Gasarch, W.: Chapter four - proving programs terminate using well-founded orderings, Ramsey’s Theorem, and Matrices. Adv. Comput. 97, 147–200 (2015)CrossRefGoogle Scholar
  5. 5.
    Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic, vol. 3. Springer, Berlin (1998)Google Scholar
  6. 6.
    Heizmann, M., Jones, N.D., Podelski, A.: Size-change termination and transition invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–50. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15769-1_4 CrossRefGoogle Scholar
  7. 7.
    Hirst, J.L.: Combinatorics in subsystems of second order arithmetic. Phd thesis, The Pennsylvania State University (1987)Google Scholar
  8. 8.
    Jones, N.D., Bohr, N.: Termination analysis of the untyped \({\lambda }\)-Calculus. In: Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25979-4_1 CrossRefGoogle Scholar
  9. 9.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London, UK, 17–19 January 2001, pp. 81–92 (2001)Google Scholar
  10. 10.
    Löb, M.H., Wainer, S.S.: Hierarchies of number-theoretic functions. I. Arch. Math. Logic 13(1–2), 39–51 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Podelski, A., Rybalchenko, A.: Transition invariants. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, LICS 2004, Turku, Finland, 13–17 July, pp. 32–41 (2004)Google Scholar
  12. 12.
    Ramsey, F.P.: On a problem in formal logic. Proc. London Math. Soc. 30, 264–286 (1930)CrossRefzbMATHGoogle Scholar
  13. 13.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Slaman, T.A., Yokoyama, K.: The strength of Ramsey’s Theorem for pairs and arbitrary many colors (2016) (in preparation)Google Scholar
  15. 15.
    Steila, S., Yokoyama, K.: Reverse mathematical bounds for the Termination Theorem. Ann. Pure Appl. Logic 167(12), 1213–1241 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termination of term rewriting. Appl. Algebra Eng. Commun. Comput. 16(4), 229–270 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emanuele Frittaion
    • 1
  • Silvia Steila
    • 2
  • Keita Yokoyama
    • 3
  1. 1.Mathematical InstituteTohoku UniversitySendaiJapan
  2. 2.Institute of Computer ScienceUniversity of BernBernSwitzerland
  3. 3.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations