From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation

  • Masahiro Enomoto
  • Tadateru Nishikawa
  • Naveed Siddiqui
  • Steve Chung
  • Mitsuhiko Ikura
  • Peter B. Stathopulos
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 981)

Abstract

All eukaryotic cells have adapted the use of the calcium ion (Ca2+) as a universal signaling element through the evolution of a toolkit of Ca2+ sensor, buffer and effector proteins. Among these toolkit components, integral and peripheral proteins decorate biomembranes and coordinate the movement of Ca2+ between compartments, sense these concentration changes and elicit physiological signals. These changes in compartmentalized Ca2+ levels are not mutually exclusive as signals propagate between compartments. For example, agonist induced surface receptor stimulation can lead to transient increases in cytosolic Ca2+ sourced from endoplasmic reticulum (ER) stores; the decrease in ER luminal Ca2+ can subsequently signal the opening surface channels which permit the movement of Ca2+ from the extracellular space to the cytosol. Remarkably, the minuscule compartments of mitochondria can function as significant cytosolic Ca2+ sinks by taking up Ca2+ in a coordinated manner. In non-excitable cells, inositol 1,4,5 trisphosphate receptors (IP3Rs) on the ER respond to surface receptor stimulation; stromal interaction molecules (STIMs) sense the ER luminal Ca2+ depletion and activate surface Orai1 channels; surface Orai1 channels selectively permit the movement of Ca2+ from the extracellular space to the cytosol; uptake of Ca2+ into the matrix through the mitochondrial Ca2+ uniporter (MCU) further shapes the cytosolic Ca2+ levels. Recent structural elucidations of these key Ca2+ toolkit components have improved our understanding of how they function to orchestrate precise cytosolic Ca2+ levels for specific physiological responses. This chapter reviews the atomic-resolution structures of IP3R, STIM1, Orai1 and MCU elucidated by X-ray crystallography, electron microscopy and NMR and discusses the mechanisms underlying their biological functions in their respective compartments within the cell.

Keywords

Inositol 1,4,5-trisphosphate receptor (IP3R) Stromal interaction molecule-1 (STIM1) Orai1 Mitochondrial calcium uniporter (MCU) Store operated calcium entry (SOCE) Calcium release activated calcium (CRAC) X-ray crystallography Nuclear magnetic resonance (NMR) spectroscopy Electron microscopy Calcium signaling 

Notes

Acknowledgments

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) 05239 (to P.B.S.), Canadian Institutes of Health Research (CIHR) MOP-13552 (to M.I.), NSERC UT393093 (to M.I.) and an Ontario Graduate Scholarship (to N.S.). M.I. holds the Canada Research Chair in Cancer Structural Biology.

References

  1. 1.
    Berridge MJ (2009) Cell signalling biology. Portland, LondonGoogle Scholar
  2. 2.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529CrossRefPubMedGoogle Scholar
  3. 3.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRefPubMedGoogle Scholar
  4. 4.
    Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling – an overview. Semin Cell Dev Biol 12:3–10CrossRefPubMedGoogle Scholar
  5. 5.
    Bootman MD, Lipp P (2001) Calcium signalling and regulation of cell function. In: Encyclopedia of Life Sciences. p 1–7Google Scholar
  6. 6.
    Bootman MD, Lipp P, Berridge MJ (2001) The organisation and functions of local Ca2+ signals. J Cell Sci 114:2213–2222PubMedGoogle Scholar
  7. 7.
    Balshaw D, Gao L, Meissner G (1999) Luminal loop of the ryanodine receptor: a pore-forming segment? Proc Natl Acad Sci USA 96:3345–3347CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702CrossRefPubMedGoogle Scholar
  9. 9.
    Tu H, Nosyreva E, Miyakawa T, Wang Z, Mizushima A, Iino M, Bezprozvanny I (2003) Functional and biochemical analysis of the type 1 inositol (1,4,5)-trisphosphate receptor calcium sensor. Biophys J 85:290–299CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525CrossRefPubMedGoogle Scholar
  11. 11.
    Kadamur G, Ross EM (2013) Mammalian phospholipase C. Annu Rev Physiol 75:127–154CrossRefPubMedGoogle Scholar
  12. 12.
    Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I (2014) Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 739:39–48CrossRefPubMedGoogle Scholar
  13. 13.
    Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378CrossRefPubMedGoogle Scholar
  14. 14.
    MacLennan DH (2000) Ca2+ signalling and muscle disease. Eur J Biochem 267:5291–5297CrossRefPubMedGoogle Scholar
  15. 15.
    Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12CrossRefPubMedGoogle Scholar
  16. 16.
    Stathopulos PB, Ikura M (2016) Store operated calcium entry: from concept to structural mechanisms. Cell Calcium 63:3–7CrossRefPubMedGoogle Scholar
  17. 17.
    Andersen TB, Lopez CQ, Manczak T, Martinez K, Simonsen HT (2015) Thapsigargin – from Thapsia L. to mipsagargin. Molecules 20:6113–6127CrossRefPubMedGoogle Scholar
  18. 18.
    Hogan PG (2017) Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 63:66–69CrossRefPubMedGoogle Scholar
  19. 19.
    Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck-Weiermair M, Hallstrom S, Graier WF, Malli R (2014) IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci 127:2944–2955CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fonteriz R, Matesanz-Isabel J, Arias-Del-Val J, Alvarez-Illera P, Montero M, Alvarez J (2016) Modulation of calcium entry by mitochondria. Adv Exp Med Biol 898:405–421CrossRefPubMedGoogle Scholar
  21. 21.
    Kopach O, Kruglikov I, Pivneva T, Voitenko N, Verkhratsky A, Fedirko N (2011) Mitochondria adjust Ca(2+) signaling regime to a pattern of stimulation in salivary acinar cells. Biochim Biophys Acta 1813:1740–1748CrossRefPubMedGoogle Scholar
  22. 22.
    Ma T, Gong K, Yan Y, Song B, Zhang X, Gong Y (2012) Mitochondrial modulation of store-operated Ca(2+) entry in model cells of Alzheimer’s disease. Biochem Biophys Res Commun 426:196–202CrossRefPubMedGoogle Scholar
  23. 23.
    Tang S, Wang X, Shen Q, Yang X, Yu C, Cai C, Cai G, Meng X, Zou F (2015) Mitochondrial Ca2+ uniporter is critical for store-operated Ca2+ entry-dependent breast cancer cell migration. Biochem Biophys Res Commun 458:186–193CrossRefPubMedGoogle Scholar
  24. 24.
    Marchi S, Pinton P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592:829–839CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288:10750–10758CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carafoli E (2003) Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci 28:175–181CrossRefPubMedGoogle Scholar
  27. 27.
    Raffaello A, De Stefani D, Rizzuto R (2012) The mitochondrial Ca(2+) uniporter. Cell Calcium 52:16–21CrossRefPubMedGoogle Scholar
  28. 28.
    Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460:72–81CrossRefPubMedGoogle Scholar
  29. 29.
    Drago I, Pizzo P, Pozzan T (2011) After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 30:4119–4125CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brini M, Carafoli E (2000) Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol Life Sci 57:354–370CrossRefPubMedGoogle Scholar
  31. 31.
    De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192CrossRefPubMedGoogle Scholar
  32. 32.
    Nita LI, Hershfinkel M, Sekler I (2015) Life after the birth of the mitochondrial Na+/Ca2+ exchanger, NCLX. Sci China Life Sci 58:59–65CrossRefPubMedGoogle Scholar
  33. 33.
    Carafoli E, Balcavage WX, Lehninger AL, Mattoon JR (1970) Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta 205:18–26CrossRefPubMedGoogle Scholar
  34. 34.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci USA 103:9357–9362CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185CrossRefPubMedGoogle Scholar
  38. 38.
    Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium-selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233CrossRefPubMedGoogle Scholar
  40. 40.
    Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Feske S (2012) Immunodeficiency due to defects in store-operated calcium entry. Ann N Y Acad Sci 1238:74–90CrossRefGoogle Scholar
  44. 44.
    Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabo I, Rizzuto R (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32:2362–2376CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467:291–296CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, Oshea J, Koteliansky V, Mootha VK (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8:e55785CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mallilankaraman K, Cardenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM, Golenar T, Csordas G, Madireddi P, Yang J, Muller M, Miller R, Kolesar JE, Molgo J, Kaufman B, Hajnoczky G, Foskett JK, Madesh M (2012) MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14:1336–1343CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, Koch WJ, Cheung JY, Madesh M (2014) SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell 25:936–947CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Seo MD, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA, Dale P, Li C, Ames JB, Ikura M, Taylor CW (2012) Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483:108–112CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lin CC, Baek K, Lu Z (2011) Apo and InsP(3)-bound crystal structures of the ligand-binding domain of an InsP(3) receptor. Nat Struct Mol Biol 18:1172–1174CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chan J, Yamazaki H, Ishiyama N, Seo MD, Mal TK, Michikawa T, Mikoshiba K, Ikura M (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203CrossRefPubMedGoogle Scholar
  56. 56.
    Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700CrossRefPubMedGoogle Scholar
  57. 57.
    Ding Z, Rossi AM, Riley AM, Rahman T, Potter BV, Taylor CW (2010) Binding of inositol 1,4,5-trisphosphate (IP3) and adenophostin A to the N-terminal region of the IP3 receptor: thermodynamic analysis using fluorescence polarization with a novel IP3 receptor ligand. Mol Pharmacol 77:995–1004CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rossi AM, Taylor CW (2013) High-throughput fluorescence polarization assay of ligand binding to IP3 receptors. Cold Spring Harb Protoc 2013:938–946CrossRefPubMedGoogle Scholar
  59. 59.
    Sipma H, De Smet P, Sienaert I, Vanlingen S, Missiaen L, Parys JB, De Smedt H (1999) Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin. J Biol Chem 274:12157–12162CrossRefPubMedGoogle Scholar
  60. 60.
    Vanlingen S, Sipma H, De Smet P, Callewaert G, Missiaen L, De Smedt H, Parys JB (2001) Modulation of inositol 1,4,5-trisphosphate binding to the various inositol 1,4,5-trisphosphate receptor isoforms by thimerosal and cyclic ADP-ribose. Biochem Pharmacol 61:803–809CrossRefPubMedGoogle Scholar
  61. 61.
    Yoshikawa F, Iwasaki H, Michikawa T, Furuichi T, Mikoshiba K (1999) Cooperative formation of the ligand-binding site of the inositol 1,4, 5-trisphosphate receptor by two separable domains. J Biol Chem 274:328–334CrossRefPubMedGoogle Scholar
  62. 62.
    Yoshikawa F, Uchiyama T, Iwasaki H, Tomomori-Satoh C, Tanaka T, Furuichi T, Mikoshiba K (1999) High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun 257:792–797CrossRefPubMedGoogle Scholar
  63. 63.
    Li C, Enomoto M, Rossi AM, Seo MD, Rahman T, Stathopulos PB, Taylor CW, Ikura M, Ames JB (2013) CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions. Proc Natl Acad Sci USA 110:8507–8512CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:18277–18284CrossRefPubMedGoogle Scholar
  65. 65.
    Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K (2010) Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J Biol Chem 285:36081–36091CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rossi AM, Riley AM, Tovey SC, Rahman T, Dellis O, Taylor EJ, Veresov VG, Potter BV, Taylor CW (2009) Synthetic partial agonists reveal key steps in IP3 receptor activation. Nature Chem Biol 5:631–639CrossRefGoogle Scholar
  67. 67.
    Murray SC, Flanagan J, Popova OB, Chiu W, Ludtke SJ, Serysheva II (2013) Validation of cryo-EM structure of IP(3)R1 channel. Structure 21:900–909CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ludtke SJ, Tran TP, Ngo QT, Moiseenkova-Bell VY, Chiu W, Serysheva II (2011) Flexible architecture of IP3R1 by Cryo-EM. Structure 19:1192–1199CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279:547–555CrossRefPubMedGoogle Scholar
  70. 70.
    Li C, Chan J, Haeseleer F, Mikoshiba K, Palczewski K, Ikura M, Ames JB (2009) Structural insights into Ca2+-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. J Biol Chem 284:2472–2481CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Park S, Li C, Ames JB (2010) 1H, 15N, and 13C chemical shift assignments of calcium-binding protein 1 with Ca2+ bound at EF1, EF3 and EF4. Biomol NMR Assign 4:159–161CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yang J, McBride S, Mak DO, Vardi N, Palczewski K, Haeseleer F, Foskett JK (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci USA 99:7711–7716CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Clarke OB, Hendrickson WA (2016) Structures of the colossal RyR1 calcium release channel. Curr Opin Struct Biol 39:144–152CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hernandez-Ochoa EO, Pratt SJ, Lovering RM, Schneider MF (2015) Critical role of intracellular RyR1 calcium release channels in skeletal muscle function and disease. Front Physiol 6:420PubMedGoogle Scholar
  75. 75.
    Landstrom AP, Dobrev D, Wehrens XHT (2017) Calcium signaling and cardiac arrhythmias. Circ Res 120:1969–1993CrossRefPubMedGoogle Scholar
  76. 76.
    Leong P, MacLennan DH (1998) Complex interactions between skeletal muscle ryanodine receptor and dihydropyridine receptor proteins. Biochem Cell Biol 76:681–694CrossRefPubMedGoogle Scholar
  77. 77.
    Van Petegem F (2015) Ryanodine receptors: allosteric ion channel giants. J Mol Biol 427:31–53CrossRefPubMedGoogle Scholar
  78. 78.
    Yuchi Z, Van Petegem F (2016) Ryanodine receptors under the magnifying lens: insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 59:209–227CrossRefPubMedGoogle Scholar
  79. 79.
    Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235–249CrossRefPubMedGoogle Scholar
  80. 80.
    Tung CC, Lobo PA, Kimlicka L, Van Petegem F (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468:585–588CrossRefPubMedGoogle Scholar
  81. 81.
    Amador FJ, Liu S, Ishiyama N, Plevin MJ, Wilson A, MacLennan DH, Ikura M (2009) Crystal structure of type I ryanodine receptor amino-terminal beta-trefoil domain reveals a disease-associated mutation “hot spot” loop. Proc Natl Acad Sci USA 106:11040–11044CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Amador FJ, Stathopulos PB, Enomoto M, Ikura M (2013) Ryanodine receptor calcium release channels: lessons from structure-function studies. Febs J 280:5456–5470CrossRefPubMedGoogle Scholar
  83. 83.
    Bultynck G, Rossi D, Callewaert G, Missiaen L, Sorrentino V, Parys JB, De Smedt H (2001) The conserved sites for the FK506-binding proteins in ryanodine receptors and inositol 1,4,5-trisphosphate receptors are structurally and functionally different. J Biol Chem 276:47715–47724CrossRefPubMedGoogle Scholar
  84. 84.
    Seo MD, Enomoto M, Ishiyama N, Stathopulos PB, Ikura M (2014) Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim Biophys Acta 1853(9):1980–1991CrossRefPubMedGoogle Scholar
  85. 85.
    Straub SV, Giovannucci DR, Yule DI (2000) Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria. J Gen Physiol 116:547–560CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yuchi Z, Van Petegem F (2011) Common allosteric mechanisms between ryanodine and inositol-1,4,5-trisphosphate receptors. Channels (Austin) 5:120–123CrossRefGoogle Scholar
  87. 87.
    Amador FJ, Kimlicka L, Stathopulos PB, Gasmi-Seabrook GM, Maclennan DH, Van Petegem F, Ikura M (2013) Type 2 ryanodine receptor domain A contains a unique and dynamic alpha-helix that transitions to a beta-strand in a mutant linked with a heritable cardiomyopathy. J Mol Biol 425:4034–4046CrossRefPubMedGoogle Scholar
  88. 88.
    Stathopulos PB, Seo MD, Enomoto M, Amador FJ, Ishiyama N, Ikura M (2012) Themes and variations in ER/SR calcium release channels: structure and function. Physiology 27:331–342CrossRefPubMedGoogle Scholar
  89. 89.
    Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva II (2015) Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527:336–341CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Hamada K, Miyatake H, Terauchi A, Mikoshiba K (2017) IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci USA 114(18):4661–4666CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560CrossRefPubMedGoogle Scholar
  92. 92.
    Schug ZT, Joseph SK (2006) The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J Biol Chem 281:24431–24440CrossRefPubMedGoogle Scholar
  93. 93.
    Alzayady KJ, Wagner LE 2nd, Chandrasekhar R, Monteagudo A, Godiska R, Tall GG, Joseph SK, Yule DI (2013) Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 288:29772–29784CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI (2016) Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal 9:ra35CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chandrasekhar R, Alzayady KJ, Wagner LE 2nd, Yule DI (2016) Unique regulatory properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. J Biol Chem 291:4846–4860CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chandrasekhar R, Alzayady KJ, Yule DI (2015) Using concatenated subunits to investigate the functional consequences of heterotetrameric inositol 1,4,5-trisphosphate receptors. Biochem Soc Trans 43:364–370CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940CrossRefPubMedGoogle Scholar
  98. 98.
    Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862CrossRefPubMedGoogle Scholar
  100. 100.
    Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369:240–246CrossRefPubMedGoogle Scholar
  101. 101.
    Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284:728–732CrossRefPubMedGoogle Scholar
  102. 102.
    Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci USA 108:1337–1342CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155CrossRefPubMedGoogle Scholar
  104. 104.
    Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Williams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596:131–137CrossRefPubMedGoogle Scholar
  106. 106.
    Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103:16704–16709CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586:5383–5401CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3:ra82CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Muik M, Fahrner M, Schindl R, Stathopulos P, Frischauf I, Derler I, Plenk P, Lackner B, Groschner K, Ikura M, Romanin C (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30:1678–1689CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Yu F, Sun L, Hubrack S, Selvaraj S, Machaca K (2013) Intramolecular shielding maintains the ER Ca2+ sensor STIM1 in an inactive conformation. J Cell Sci 126:2401–2410CrossRefPubMedGoogle Scholar
  112. 112.
    Zheng H, Zhou MH, Hu C, Kuo E, Peng X, Hu J, Kuo L, Zhang SL (2013) Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 288:11263–11272CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122CrossRefPubMedGoogle Scholar
  114. 114.
    Huang Y, Zhou Y, Wong HC, Chen Y, Wang S, Castiblanco A, Liu A, Yang JJ (2009) A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+. Febs J 276:5589–5597CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Cai X (2007) Molecular evolution and functional divergence of the Ca2+ sensor protein in store-operated Ca2+ entry: stromal interaction molecule. PLoS One 2:e609CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Zhou Y, Mancarella S, Wang Y, Yue C, Ritchie M, Gill DL, Soboloff J (2009) The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 284:19164–19168CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J (2011) Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 6:e19285CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Choi YJ, Zhao Y, Bhattacharya M, Stathopulos PB (2017) Structural perturbations induced by Asn131 and Asn171 glycosylation converge within the EFSAM core and enhance stromal interaction molecule-1 mediated store operated calcium entry. Biochim Biophys Acta 1864:1054–1063CrossRefPubMedGoogle Scholar
  121. 121.
    Kilch T, Alansary D, Peglow M, Dorr K, Rychkov G, Rieger H, Peinelt C, Niemeyer BA (2013) Mutations of the Ca2+-sensing stromal interaction molecule STIM1 regulate Ca2+ influx by altered oligomerization of STIM1 and by destabilization of the Ca2+ channel Orai1. J Biol Chem 288:1653–1664CrossRefPubMedGoogle Scholar
  122. 122.
    Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y, Bhanumathy CD, Subbiah R, Ritchie MF, Soboloff J, Baba Y, Kurosaki T, Joseph SK, Gill DL, Madesh M (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190:391–405CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Prins D, Groenendyk J, Touret N, Michalak M (2011) Modulation of STIM1 and capacitative Ca2+ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Rep 12:1182–1188CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291:20849–20857CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M (2015) Calmodulin and STIM proteins: two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 460:5–21CrossRefPubMedGoogle Scholar
  127. 127.
    Nakayama S, Kretsinger RH (1994) Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 23:473–507CrossRefPubMedGoogle Scholar
  128. 128.
    Kim CA, Bowie JU (2003) SAM domains: uniform structure, diversity of function. Trends Biochem Sci 28:625–628CrossRefPubMedGoogle Scholar
  129. 129.
    Kim CA, Phillips ML, Kim W, Gingery M, Tran HH, Robinson MA, Faham S, Bowie JU (2001) Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. EMBO J 20:4173–4182CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Mercurio FA, Leone M (2016) The Sam domain of EphA2 receptor and its relevance to cancer: a novel challenge for drug discovery? Curr Med Chem 23:4718–4734CrossRefPubMedGoogle Scholar
  131. 131.
    Stapleton D, Balan I, Pawson T, Sicheri F (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6:44–49CrossRefPubMedGoogle Scholar
  132. 132.
    Thanos CD, Goodwill KE, Bowie JU (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283:833–836CrossRefPubMedGoogle Scholar
  133. 133.
    Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005:re7PubMedGoogle Scholar
  134. 134.
    Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role for STIM1 as a trigger for calcium influx factor production. J Biol Chem 283:14524–14531CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Czyz A, Brutkowski W, Fronk J, Duszynski J, Zablocki K (2009) Tunicamycin desensitizes store-operated Ca2+ entry to ATP and mitochondrial potential. Biochem Biophys Res Commun 381:176–180CrossRefPubMedGoogle Scholar
  136. 136.
    Mignen O, Thompson JL, Shuttleworth TJ (2007) STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J Physiol 579:703–715CrossRefPubMedGoogle Scholar
  137. 137.
    Cui B, Yang X, Li S, Lin Z, Wang Z, Dong C, Shen Y (2013) The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS One 8:e74735CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, Kiyonaka S, Mori Y, Sato C (2009) Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284:13676–13685CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385:49–54CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:5657–5662CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4:2963CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Zhou Y, Srinivasan P, Razavi S, Seymour S, Meraner P, Gudlur A, Stathopulos PB, Ikura M, Rao A, Hogan PG (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20:973–981CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Cai X (2007) Molecular evolution and structural analysis of the Ca(2+) release-activated Ca(2+) channel subunit, Orai. J Mol Biol 368:1284–1291CrossRefPubMedGoogle Scholar
  147. 147.
    Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Thompson JL, Shuttleworth TJ (2013) How many Orai’s does it take to make a CRAC channel? Sci Rep 3:1961CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen L (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 105:13668–13673CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Covington ED, Wu MM, Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21:1897–1907CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022CrossRefPubMedGoogle Scholar
  154. 154.
    Bhardwaj R, Muller HM, Nickel W, Seedorf M (2013) Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+-sensors STIM1 and STIM2 to plasma membrane lipids. Biosci Rep 33(5). https://doi.org/10.1042/BSR20130089
  155. 155.
    Maleth J, Choi S, Muallem S, Ahuja M (2014) Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nat Commun 5:5843CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Calloway N, Owens T, Corwith K, Rodgers W, Holowka D, Baird B (2011) Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P(2) between distinct membrane pools. J Cell Sci 124:2602–2610CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Korzeniowski MK, Popovic MA, Szentpetery Z, Varnai P, Stojilkovic SS, Balla T (2009) Dependence of STIM1/Orai1-mediated calcium entry on plasma membrane phosphoinositides. J Biol Chem 284:21027–21035CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Walsh CM, Chvanov M, Haynes LP, Petersen OH, Tepikin AV, Burgoyne RD (2009) Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry. Biochem J 425:159–168CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Frischauf I, Muik M, Derler I, Bergsmann J, Fahrner M, Schindl R, Groschner K, Romanin C (2009) Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 284:21696–21706CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Lis A, Zierler S, Peinelt C, Fleig A, Penner R (2010) A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J Gen Physiol 136:673–686CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116CrossRefPubMedGoogle Scholar
  163. 163.
    Stathopulos PB, Ikura M (2013) Structural aspects of calcium-release activated calcium channel function. Channels (Austin) 7:344–353CrossRefGoogle Scholar
  164. 164.
    Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30:1143–1148CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Deluca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47:1744–1750CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364CrossRefPubMedGoogle Scholar
  167. 167.
    Prentki M, Janjic D, Wollheim CB (1983) The regulation of extramitochondrial steady state free Ca2+ concentration by rat insulinoma mitochondria. J Biol Chem 258:7597–7602PubMedGoogle Scholar
  168. 168.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  169. 169.
    Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ (2016) Architecture of the mitochondrial calcium uniporter. Nature 533:269–273CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Cao C, Wang S, Cui T, Su XC, Chou JJ (2017) Ion and inhibitor binding of the double-ring ion selectivity filter of the mitochondrial calcium uniporter. Proc Natl Acad Sci USA 114:E2846–E2851CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, Bochkarev A, Maguire ME, Edwards AM, Koth CM (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440:833–837CrossRefPubMedGoogle Scholar
  172. 172.
    Lee SK, Shanmughapriya S, Mok MC, Dong Z, Tomar D, Carvalho E, Rajan S, Junop MS, Madesh M, Stathopulos PB (2016) Structural insights into mitochondrial calcium uniporter regulation by divalent cations. Cell Chem Biol 23:1157–1169CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, Breves SL, Zhang X, Tripathi A, Palaniappan P, Riitano MF, Worth AM, Seelam A, Carvalho E, Subbiah R, Jana F, Soboloff J, Peng Y, Cheung JY, Joseph SK, Caplan J, Rajan S, Stathopulos PB, Madesh M (2017) Mitochondrial Ca2+ uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Mol Cell 65:1014–1028CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Lee Y, Min CK, Kim TG, Song HK, Lim Y, Kim D, Shin K, Kang M, Kang JY, Youn HS, Lee JG, An JY, Park KR, Lim JJ, Kim JH, Kim JH, Park ZY, Kim YS, Wang J, Kim do H, Eom SH (2015) Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. EMBO Rep 16:1318–1333CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Favaron M, Bernardi P (1985) Tissue-specific modulation of the mitochondrial calcium uniporter by magnesium ions. FEBS Lett 183:260–264CrossRefPubMedGoogle Scholar
  176. 176.
    Jung DW, Apel L, Brierley GP (1990) Matrix free Mg2+ changes with metabolic state in isolated heart mitochondria. Biochemistry 29:4121–4128CrossRefPubMedGoogle Scholar
  177. 177.
    Moreau B, Parekh AB (2008) Ca2+ -dependent inactivation of the mitochondrial Ca2+ uniporter involves proton flux through the ATP synthase. Curr Biol 18:855–859CrossRefPubMedGoogle Scholar
  178. 178.
    Szanda G, Rajki A, Gallego-Sandin S, Garcia-Sancho J, Spat A (2009) Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflugers Arch 457:941–954CrossRefPubMedGoogle Scholar
  179. 179.
    Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, Yang J, Moore SA, Scholz TD, Strack S, Mohler PJ, Sivitz WI, Song LS, Anderson ME (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491:269–273CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Bootman MD (2012) Calcium signaling. Cold Spring Harb Perspect Biol 4:a011171CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Bootman MD, Berridge MJ (1995) The elemental principles of calcium signaling. Cell 83:675–678CrossRefPubMedGoogle Scholar
  182. 182.
    Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754CrossRefPubMedGoogle Scholar
  183. 183.
    Tu H, Wang Z, Bezprozvanny I (2005) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88:1056–1069CrossRefPubMedGoogle Scholar
  184. 184.
    Wingard JN, Chan J, Bosanac I, Haeseleer F, Palczewski K, Ikura M, Ames JB (2005) Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels. J Biol Chem 280:37461–37470CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Stathopulos PB, Ikura M (2009) Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry. Immunol Rev 231:113–131CrossRefPubMedGoogle Scholar
  186. 186.
    Stathopulos PB, Ikura M (2010) Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochem Cell Biol 88:175–183CrossRefPubMedGoogle Scholar
  187. 187.
    Stathopulos PB, Ikura M (2013) Structure and function of endoplasmic reticulum STIM calcium sensors. Curr Top Membr 71:59–93CrossRefPubMedGoogle Scholar
  188. 188.
    Bauer MC, O’Connell D, Cahill DJ, Linse S (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47:6089–6091CrossRefPubMedGoogle Scholar
  189. 189.
    Liu Y, Zheng X, Mueller GA, Sobhany M, DeRose EF, Zhang Y, London RE, Birnbaumer L (2012) Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J Biol Chem 287:43030–43041CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Dubois C, Prevarskaya N, Vanden Abeele F (2016) The calcium-signaling toolkit: updates needed. Biochim Biophys Acta 1863:1337–1343CrossRefPubMedGoogle Scholar
  192. 192.
    Marchadier E, Oates ME, Fang H, Donoghue PC, Hetherington AM, Gough J (2016) Evolution of the calcium-based intracellular signaling system. Genome Biol Evol 8:2118–2132CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Schwaller B (2012) The regulation of a cell’s Ca2+ signaling toolkit: the Ca2+ homeostasome. Adv Exp Med Biol 740:1–25CrossRefPubMedGoogle Scholar
  194. 194.
    Zampese E, Pizzo P (2012) Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 69:1077–1104CrossRefPubMedGoogle Scholar
  195. 195.
    Glitsch M (2011) Protons and Ca2+: ionic allies in tumor progression? Physiology 26:252–265CrossRefPubMedGoogle Scholar
  196. 196.
    Huang WC, Swietach P, Vaughan-Jones RD, Ansorge O, Glitsch MD (2008) Extracellular acidification elicits spatially and temporally distinct Ca2+ signals. Curr Biol 18:781–785CrossRefPubMedGoogle Scholar
  197. 197.
    Wei WC, Jacobs B, Becker EB, Glitsch MD (2015) Reciprocal regulation of two G protein-coupled receptors sensing extracellular concentrations of Ca2+ and H. Proc Natl Acad Sci USA 112:10738–10743CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Masahiro Enomoto
    • 1
    • 2
  • Tadateru Nishikawa
    • 1
    • 2
  • Naveed Siddiqui
    • 3
  • Steve Chung
    • 3
  • Mitsuhiko Ikura
    • 1
    • 2
  • Peter B. Stathopulos
    • 3
  1. 1.Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  3. 3.Department of Physiology and PharmacologyUniversity of Western OntarioLondonCanada

Personalised recommendations