Numerical Optimization of ESA’s Messenger Space Mission Benchmark

  • Martin Schlueter
  • Mohamed Wahib
  • Masaharu Munetomo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

The design and optimization of interplanetary space mission trajectories is known to be a difficult challenge. The trajectory of the Messenger mission (launched by NASA in 2004) is one of the most complex ones ever created. The European Space Agency (ESA) makes available a numerical optimization benchmark which resembles an accurate model of Messengers full mission trajectory. This contribution presents an optimization approach which is capable to (robustly) solve ESA’s Messenger full mission benchmark to its putative global solution within 24 h run time on a moderate sized computer cluster. The considered algorithm, named MXHPC, is a parallelization framework for the MIDACO optimization algorithm which is an evolutionary method particularly suited for space trajectory design. The presented results demonstrate the effectiveness of evolutionary computing for complex real-world problems which have been previously considered intractable.

Keywords

Interplanetary space trajectory Optimization GTOP Messenger CMAES, MIDACO Parallelization 

Notes

Acknowledgement

The authors are grateful to the Advanced Concept Team (ACT) of the European Space Agency (ESA) and particular Dario Izzo for providing and maintaining the GTOP database. The first author would further like to thank the European Space Agency (ESA-ESTEC/Contract No. 21943/08/NL/ST) and EADS Astrium Ltd. (Stevenage, UK) for their support on the MIDACO development.

References

  1. 1.
    Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: Global optimization for the design of space trajectories. Comput. Optim. Appl. 48(3), 635–652 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: Proceedings of the International Conference on Artificial Intelligence in Space (IJCAI) (2009)Google Scholar
  3. 3.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1769–1776. IEEE (2005)Google Scholar
  4. 4.
    Biazzini, M., Banhelyi, B., Montresor, A., Jelasity, M.: Distributed hyper-heuristics for real parameter optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1339–1346 (2009)Google Scholar
  5. 5.
    Biscani, F., Izzo, D., Yam, C.H.: A global optimisation toolbox for massively parallel engineering optimisation. In: Proceedings of the 4th International Conference on Astrodynamics Tools and Techniques (ICATT) (2010)Google Scholar
  6. 6.
    Danoy, G., Pinto, F.G., Dorronsoro, B., Bouvry, P.: New state-of-the-art results for Cassini2 global trajectory optimization problem. Acta Futura 5, 65–72 (2012)Google Scholar
  7. 7.
    European Space Agency (ESA) and Advanced Concepts Team (ACT). GTOP database: Messenger (Full Mission) Instance (2016). Software http://www.esa.int/gsp/ACT/inf/projects/gtop/messenger_full.html
  8. 8.
    Gad, A.H.G.E.: Space trajectories optimization using variable-chromosome-length genetic algorithms. Ph.D.-Thesis, Michigan Technological University, USA (2011)Google Scholar
  9. 9.
    Gruber, A.: Multi Gravity Assist Optimierung mittels Evolutionsstrategien. BSc-Thesis, Vienna University of Technology, Austria (2009)Google Scholar
  10. 10.
    Hansen, N.: The CMA Evolution Strategy (2016). Sofware https://www.lri.fr/~hansen/cmaesintro.html
  11. 11.
    Henderson, T.A.: A Learning Approach To Sampling Optimization: Applications in Astrodynamics. Ph.D.-Thesis, Texas A & M University, USA (2013)Google Scholar
  12. 12.
    Islam, S.K.M., Roy, S.G.S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. 42(2), 482–500 (2012)CrossRefGoogle Scholar
  13. 13.
    Izzo, D.: Global optimization and space pruning for spacecraft trajectory design. In: Conway, B. (ed.) Spacecraft Trajectory Optimization, pp. 178–199. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  14. 14.
    Kemble, S.: Interplanetary Mission Analysis and Design. Astronautical Engineering. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Lancinskas, A., Zilinskas, J., Ortigosa, P.M.: Investigation of parallel particle swarm optimization algorithm with reduction of the search area. In: Proceedings of the International Conference on Cluster Computing Workshops and Posters. IEEE (2010)Google Scholar
  16. 16.
    Musegaas, P.: Optimization of space trajectories including multiple gravity assists and deep space maneuvers. MSc Thesis, Delft University of Technology, Netherlands (2012)Google Scholar
  17. 17.
    Schlueter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper Res. 36(7), 2217–2229 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schlueter, M., Gerdts, M., Rueckmann, J.J.: A numerical study of MIDACO on 100 MINLP benchmarks. Optimization 61(7), 873–900 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Schlueter, M., Erb, S., Gerdts, M., Kemble, S., Rueckmann, J.J.: MIDACO on MINLP space applications. Adv. Space Res. 51(7), 1116–1131 (2013)CrossRefGoogle Scholar
  20. 20.
    Schlueter, M.: MIDACO software performance on interplanetary trajectory benchmarks. Adv. Space Res. 54(4), 744–754 (2014)CrossRefGoogle Scholar
  21. 21.
    Schlueter, M., Munetomo, M.: Introduction to MIDACO-SOLVER software. Technical report, HUSCAP, Hokkaido University, Japan (2013)Google Scholar
  22. 22.
    Stracquadanio, G., La Ferla, A., De Felice, M., Nicosia, G.: Design of robust space trajectories. In: Proceedings of the 31st International Conference on Artificial Intelligence (SGAI) (2011)Google Scholar
  23. 23.
    Vinko, T., Izzo, D.: Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design, European Space Agency. ACT Technical report, ACT-TNT-MAD-GOHTPPSTD (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martin Schlueter
    • 1
  • Mohamed Wahib
    • 2
  • Masaharu Munetomo
    • 1
  1. 1.Information Initiative CenterHokkaido UniversitySapporoJapan
  2. 2.RIKEN Advanced Institute for Computational ScienceKobeJapan

Personalised recommendations