A Framework for Knowledge Integrated Evolutionary Algorithms

  • Ahmed Hallawa
  • Anil Yaman
  • Giovanni Iacca
  • Gerd Ascheid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

One of the main reasons for the success of Evolutionary Algorithms (EAs) is their general-purposeness, i.e. the fact that they can be applied in a straight forward manner to a broad range of optimization problems, without any specific prior knowledge. On the other hand, it has been shown that incorporating a priori knowledge, such as expert knowledge or empirical findings, can significantly improve the performance of an EA. However, integrating knowledge in EAs poses numerous challenges. It is often the case that the features of the search space are unknown, hence any knowledge associated with the search space properties can be hardly used. In addition, a priori knowledge is typically problem-specific and hard to generalize. In this paper, we propose a framework, called Knowledge Integrated Evolutionary Algorithm (KIEA), which facilitates the integration of existing knowledge into EAs. Notably, the KIEA framework is EA-agnostic, i.e. it works with any evolutionary algorithm, problem-independent, i.e. it is not dedicated to a specific type of problems and expandable, i.e. its knowledge base can grow over time. Furthermore, the framework integrates knowledge while the EA is running, thus optimizing the consumption of computational power. In the preliminary experiments shown here, we observe that the KIEA framework produces in the worst case an 80% improvement on the converge time, w.r.t. the corresponding “knowledge-free” EA counterpart.

Keywords

Evolutionary algorithms Knowledge incorporation Landscape analysis Evolutionary algorithm fingerprint 

Notes

Acknowledgments

Open image in new window This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 665347. We also gratefully acknowledge the computational resources provided by RWTH Compute Cluster from RWTH Aachen University under project RWTH0118.

References

  1. 1.
    Koza, J.R., Keane, M.A., Streeter, M.J.: What’s ai done for me lately? genetic programming’s human-competitive results. IEEE Intell. Syst. 3, 25–31 (2003)CrossRefGoogle Scholar
  2. 2.
    Arcuri, A., Yao, X.: Co-evolutionary automatic programming for software development. Inf. Sci. 259, 412–432 (2014)CrossRefGoogle Scholar
  3. 3.
    Squillero, G.: MicroGP - an evolutionary assembly program generator. Program. Evol. Mach. 6(3), 247–263 (2005)CrossRefGoogle Scholar
  4. 4.
    Hornby, G.S., Globus, A., Linden, D.S., Lohn, J.D.: Automated antenna design with evolutionary algorithms. In: AIAA Space, pp. 19–21 (2006)Google Scholar
  5. 5.
    Lohn, J.D., Linden, D.S., Hornby, G.S., Kraus, W.F., Rodriguez-Arroyo, A.: Evolutionary design of an X-band antenna for NASA’s space technology 5 mission. In: null, vol. 155. IEEE (2003)Google Scholar
  6. 6.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  7. 7.
    Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)MATHGoogle Scholar
  8. 8.
    Bäck, T.: Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 57–62. IEEE (1994)Google Scholar
  9. 9.
    Gates, G.H., Merkle, L.D., Lamont, G.B., Pachter, R.: Simple genetic algorithm parameter selection for protein structure prediction. In: IEEE International Conference on Evolutionary Computation, vol. 2, pp. 620–624. IEEE (1995)Google Scholar
  10. 10.
    Yang, M., Cai, Z., Li, C., Guan, J.: An improved adaptive differential evolution algorithm with population adaptation. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 145–152. ACM (2013)Google Scholar
  11. 11.
    Caorsi, S., Massa, A., Pastorino, M., Randazzo, A.: Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans. Antenna Propag. 53(1), 372–376 (2005)CrossRefGoogle Scholar
  12. 12.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  13. 13.
    Eiben, A.E., Schippers, C.A.: On evolutionary exploration and exploitation. Fundamenta Informaticae 35(1–4), 35–50 (1998)MATHGoogle Scholar
  14. 14.
    Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1, pp. 258–265. Morgan Kaufmann Publishers Inc. (1999)Google Scholar
  15. 15.
    Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)CrossRefGoogle Scholar
  16. 16.
    Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and population size reduction in compact differential evolution. In: IEEE Workshop on Memetic Computing (MC), pp. 1–8. IEEE (2011)Google Scholar
  17. 17.
    Kononova, A.V., Corne, D.W., Wilde, P., Shneer, V., Caraffini, F.: Structural bias in population-based algorithms. Inf. Sci. 298, 468–490 (2015)CrossRefGoogle Scholar
  18. 18.
    Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Casas, N.: Genetic algorithms for multimodal optimization: a review. arXiv preprint arXiv:1508.05342 (2015)
  20. 20.
    Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 786–791. IEEE (1996)Google Scholar
  21. 21.
    Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Trans. Evol. Comput. 2(3), 97–106 (1998)CrossRefGoogle Scholar
  22. 22.
    Asmus, J., Borchmann, D., Sbalzarini, I.F., Walther, D.: Towards an FCA-based recommender system for black-box optimization. In: Workshop Notes, p. 35 (2014)Google Scholar
  23. 23.
    Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32937-1_23 CrossRefGoogle Scholar
  24. 24.
    Picek, S., Jakobovic, D.: From fitness landscape to crossover operator choice. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 815–822. ACM (2014)Google Scholar
  25. 25.
    Min, K., Kao, M.-Y., Zhu, H.: The closest pair problem under the hamming metric. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 205–214. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02882-3_21 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ahmed Hallawa
    • 1
  • Anil Yaman
    • 2
    • 3
  • Giovanni Iacca
    • 2
  • Gerd Ascheid
    • 1
  1. 1.Chair for Integrated Signal Processing SystemsRWTH Aachen UniversityAachenGermany
  2. 2.INCAS3AssenThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations