Dynamic Portfolio Optimization in Ultra-High Frequency Environment

  • Patryk Filipiak
  • Piotr LipinskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)


This paper concerns the problem of portfolio optimization in the context of ultra-high frequency environment with dynamic and frequent changes in statistics of financial assets. It aims at providing Pareto fronts of optimal portfolios and updating them when estimated return rates or risks of financial assets change. The problem is defined in terms of dynamic optimization and solved online with a proposed evolutionary algorithm. Experiments concern ultra-high frequency time series coming from the London Stock Exchange Rebuilt Order Book database and the FTSE100 index.


Portfolio optimization Dynamic optimization problems Multi-objective optimization Evolutionary algorithms Ultra-high frequency time series 



Calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (, Grant No. 405.


  1. 1.
    Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)Google Scholar
  2. 2.
    Sharpe, W.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19, 425–442 (1964)Google Scholar
  3. 3.
    Sharpe, W.: The sharpe ratio. J. Portfolio Manag. 21(1), 49–58 (1994)CrossRefGoogle Scholar
  4. 4.
    Sortino, F., Price, L.: Performance measurement in a downside risk framework. J. Investing 3, 59–64 (1994)CrossRefGoogle Scholar
  5. 5.
    Bacon, C.: Practical Portfolio Performance Measurement and Attribution. Wiley, Hoboken (2008)Google Scholar
  6. 6.
    Anagnostopoulos, K., Mamanis, G.: A portfolio optimization model with three objectives and discrete variables. Comput. Oper. Res. 37(7), 1285–1297 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, T., Meade, N., Beasley, J., Sharaiha, Y.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Mansini, R., Speranza, M.G.: Heuristic algorithms for the portfolio selection problem with minimum transaction lots. Eur. J. Oper. Res. 114(2), 219–233 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lin, C.-C., Liu, Y.-T.: Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185(1), 393–404 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Tapia, M.G.C., Coello, C.A.C.: Applications of multi-objective evolutionary algorithms in economics and finance: A survey. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 532–539 (2007)Google Scholar
  11. 11.
    Coello, C.A.C.: Evolutionary multi-objective optimization and its use in finance, Handbook of Research on Nature Inspired Computing for Economy and Management (2006)Google Scholar
  12. 12.
    Ponsich, A., Jaimes, A., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17(3), 321–344 (2013)CrossRefGoogle Scholar
  13. 13.
    Skolpadungket, P., Dahal, K., Harnpornchai, N.: Portfolio optimization using multi-objective genetic algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 516–523 (2007)Google Scholar
  14. 14.
    Streichert, F., Ulmer, H., Zell, A.: Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 932–939 (2004)Google Scholar
  15. 15.
    Chiam, S., Tan, K., Al Mamum, A.: Evolutionary multi-objective portfolio optimization in practical context. Int. J. Autom. Comput. 5(1), 67–80 (2008)CrossRefGoogle Scholar
  16. 16.
    Branke, J., Scheckenbach, B., Stein, M., Deb, K., Schmeck, H.: Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. Eur. J. Oper. Res. 199(3), 684–693 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Anagnostopoulos, K., Mamanis, G.: The mean-variance cardinality constrained portfolio optimization problem: an experimental evaluation of five multiobjective evolutionary algorithms. Expert Syst. Appl. 38(11), 14208–14217 (2011)Google Scholar
  18. 18.
    Krink, T., Paterlini, S.: Multiobjective optimization using differential evolution for real-world portfolio optimization. Comput. Manag. Sci. 8(1–2), 157–179 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cura, T.: Particle swarm optimization approach to portfolio optimization. Nonlinear Anal.: Real World Appl. 10(4), 2396–2406 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Deng, G., Lin, W., Lo, C.: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst. Appl. 39(4), 4558–4566 (2012)CrossRefGoogle Scholar
  21. 21.
    Di Tollo, G., Roli, A.: Metaheuristics for the portfolio selection problem. Int. J. Oper. Res. 5(1), 13–35 (2008)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Gaspero, L.D., Tollo, G.D., Roli, A., Schaerf, A.: Hybrid metaheuristics for constrained portfolio selection problems. Quant. Finance 11(10), 1473–1487 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Armananzas, R., Lozano, J.A.: A multiobjective approach to the portfolio optimization problem. IEEE Congress on Evolutionary Computation, vol. 2, pp. 1388–1395 (2005)Google Scholar
  24. 24.
    Liu, Q.: On portfolio optimization: how and when do we benefit from high-frequency data? J. Appl. Econ. 24(4), 560–582 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Goumatianosa, N., Christoua, I., Lindgrenb, P.: Stock selection system: building long/short portfolios using intraday patterns. Proc. Econ. Finance 5, 298–307 (2013)CrossRefGoogle Scholar
  26. 26.
    Ziegelmann, F.A., Borges, B., Caldeira, J.F.: Selection of minimum variance portfolio using intraday data: an empirical comparison among different realized measures for BM&FBovespa data. Braz. Rev. Econ. 35(1), 23–46 (2015)Google Scholar
  27. 27.
  28. 28.
    Choueifaty, Y., Froidure, T., Reynier, J.: Properties of the most diversified portfolio. J. Investment Strat. 2(2), 49–70 (2013)CrossRefGoogle Scholar
  29. 29.
    Cesarone, F., Scozzari, A., Tardella, F.: Efficient algorithms for mean-variance portfolio optimization with hard real-world constraints. AFIR Colloquium (2008)Google Scholar
  30. 30.
    Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70928-2_60CrossRefGoogle Scholar
  31. 31.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE TEC 6(2), 182–197 (2002)Google Scholar
  32. 32.
    Helbig, M., Engelbrecht, A.P.: Performance measures for dynamic multi-objective optimisation algorithms. Inf. Sci. 250, 61–81 (2013)CrossRefzbMATHGoogle Scholar
  33. 33.
    Engle, R., Fleming, M., Ghysels, E., Nguyen, G.: Liquidity and Volatility in the U.S. Treasury Market: Evidence From A New Class of Dynamic Order Book Models (2001). Accessed 21 Feb 2012
  34. 34.
    O’Hara, M.: Market Microstructure Theory. Blackwell, Oxford (1995)Google Scholar
  35. 35.
    Goodhart, C., O’Hara, M.: High frequency data in financial markets: Issues and applications. J. Empirical Finance 4, 73–114 (1997)CrossRefGoogle Scholar
  36. 36.
    Lipinski, P., Brabazon, A.: Pattern mining in ultra-high frequency order books with self-organizing maps. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 288–298. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45523-4_24Google Scholar
  37. 37.
    Lipinski, P., Michalak, K., Lancucki, A.: Improving classification of patterns in ultra-high frequency time series with evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 127–128. ACM (2016)Google Scholar
  38. 38.
    Michalak, K., Lancucki, A., Lipinski, P.: Multiobjective optimization of frequent pattern models in ultra-high frequency time series: stability versus Universality. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2016) (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computational Intelligence Research Group, Institute of Computer ScienceUniversity of WroclawWroclawPoland

Personalised recommendations