A Fast ILP-Based Heuristic for the Robust Design of Body Wireless Sensor Networks

  • Fabio D’Andreagiovanni
  • Antonella Nardin
  • Enrico Natalizio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10199)

Abstract

We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.

Keywords

Body wireless sensor networks Network design Integer linear programming Robust optimization ILP heuristic 

References

  1. 1.
    Ko, J., Lu, C., Srivastava, M., Stankovic, J., Terzis, A., Welsh, M.: Wireless sensor networks for healthcare. Proc. IEEE 98, 1947–1960 (2007)CrossRefGoogle Scholar
  2. 2.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.: Body area networks: a survey. Mob. Netw. Appl. 16, 171–193 (2010)CrossRefGoogle Scholar
  3. 3.
    Mitra, U., Emken, A., Lee, S., Li, M., Rozgic, V., Thatte, G., Vatsangam, H., Zois, D., Annavaram, M., Narayanan, S., Spruijt-Metz, D., Sukhatme, G.: KNOWME: a case study in wireless body area sensor network design. IEEE Commun. Mag. 50, 116–125 (2012)CrossRefGoogle Scholar
  4. 4.
    Guerriero, F., Violi, A., Natalizio, E., Loscri, V., Costanzo, C.: Modelling and solving optimal placement problems in wireless sensor networks. Appl. Math. Model. 35, 230–241 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Natalizio, E., Loscri, V., Viterbo, E.: Optimal placement of wireless nodes for maximizing path lifetime. IEEE Commun. Lett. 12, 362–364 (2008)CrossRefGoogle Scholar
  6. 6.
    Negra, R., Jemilia, I., Belghith, A.: Wireless body area networks: applications and technologies. Procedia Comput. Sci. 83, 1274–1281 (2016)CrossRefGoogle Scholar
  7. 7.
    D’Andreagiovanni, F.: Revisiting wireless network jamming by SIR-based considerations and multiband robust optimization. Optim. Lett. 9, 1495–1510 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D’Andreagiovanni, F., Mannino, C., Sassano, A.: GUB covers and power-indexed formulations for wireless network design. Manag. Sci. 59, 142–156 (2013)CrossRefGoogle Scholar
  9. 9.
    Gendron, B., Scutellà, M., Garroppo, R., Nencioni, G., Tavanti, L.: A branch-and-Benders-cut method for nonlinear power design in green wireless local area networks. Eur. J. Oper. Res. 255, 151–162 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Elias, J.: Optimal design of energy-efficient and cost-effective wireless body area networks. Ad Hoc Netw. 13, 560–574 (2014)CrossRefGoogle Scholar
  11. 11.
    Tsouri, G., Prieto, A., Argade, N.: On increasing network lifetime in body area networks using global routing with energy consumption balancing. Sensors 12, 13088–13108 (2012)CrossRefGoogle Scholar
  12. 12.
    Yousaf, S., Javaid, N., Khan, Z., Qasim, U., Imran, M., Iftikhar, M.: Incremental relay based cooperative communication in wireless body area networks. Procedia Comp. Sci. 52, 552–559 (2015)CrossRefGoogle Scholar
  13. 13.
    D’Andreagiovanni, F., Nardin, A.: Towards the fast and robust optimal design of wireless body area networks. Appl. Soft Comput. 37, 971–982 (2015)CrossRefGoogle Scholar
  14. 14.
    Braem, B., Latre, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens, L., Demeester, P.: The need for cooperation and relaying in short-range high path loss sensor networks. In: SENSORCOMM 2007, pp. 566–571 (2007)Google Scholar
  15. 15.
    Bertsekas, D.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont (1998)MATHGoogle Scholar
  16. 16.
    D’Andreagiovanni, F., Krolikowski, J., Pulaj, J.: A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods. Appl. Soft Comput. 26, 497–507 (2015)CrossRefGoogle Scholar
  17. 17.
    Bauschert, T., Büsing, C., D’Andreagiovanni, F., Koster, A.M.C.A., Kutschka, M., Steglich, U.: Network planning under demand uncertainty with robust optimization. IEEE Commun. Mag. 52, 178–185 (2014)CrossRefGoogle Scholar
  18. 18.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Springer, Heidelberg (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Büsing, C., D’Andreagiovanni, F.: New results about multi-band uncertainty in robust optimization. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 63–74. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30850-5_7 CrossRefGoogle Scholar
  20. 20.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial optimization problems. Eur. J. Oper. Res. 197, 427–438 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Furini, F., Iori, M., Martello, S., Yagiura, M.: Heuristic and exact algorithms for the interval minmax regret knapsack problem. INFORMS J. Comput. 27, 392–405 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
  23. 23.
    Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J. Comp. 11, 358–369 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    D’Andreagiovanni, F., Krolikowski, J., Pulaj, J.: A hybrid primal heuristic for robust multiperiod network design. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 15–26. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45523-4_2 Google Scholar
  25. 25.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)CrossRefGoogle Scholar
  26. 26.
    Gambardella, L.M., Montemanni, R., Weyland, D.: Coupling ant colony systems with strong local searches. Eur. J. Oper. Res. 220, 831–843 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2, 353–373 (2005)CrossRefGoogle Scholar
  28. 28.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)CrossRefMATHGoogle Scholar
  29. 29.
    Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. 102, 71–90 (2005)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    D’Andreagiovanni, F.: On improving the capacity of solving large-scale wireless network design problems by genetic algorithms. In: Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 11–20. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20520-0_2 CrossRefGoogle Scholar
  31. 31.
    Dely, P., D’Andreagiovanni, F., Kassler, A.: Fair optimization of mesh-connected WLAN hotspots. Wirel. Commun. Mob. Com. 15, 924–946 (2015)CrossRefGoogle Scholar
  32. 32.
    Bley, A., D’Andreagiovanni, F., Karch, D.: WDM fiber replacement scheduling. Electron. Notes Discret. Math. 41, 189–196 (2013)CrossRefGoogle Scholar
  33. 33.
    D’Andreagiovanni, F., Mannino, C., Sassano, A.: Negative cycle separation in wireless network design. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 51–56. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21527-8_7 CrossRefGoogle Scholar
  34. 34.
    Zakrzewska, A., D’Andreagiovanni, F., Ruepp, S., Berger, M.: Biobjective optimization of radio access technology selection and resource allocation in heterogeneous wireless networks. In: 2013 11th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 652–658. IEEE (2013)Google Scholar
  35. 35.
    D’Andreagiovanni, F., Caire, G.: An unconventional clustering problem: user service profile optimization. In: 2016 IEEE International Symposium on Information Theory (ISIT). IEEE Xplore, Piscataway. IEEE (2016). doi: 10.1109/ISIT.2016.7541420

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fabio D’Andreagiovanni
    • 1
  • Antonella Nardin
    • 2
  • Enrico Natalizio
    • 1
  1. 1.Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR 7253CompiègneFrance
  2. 2.Università Degli Studi Roma TreRomaItaly

Personalised recommendations