On the Optimal Control of Opinion Dynamics on Evolving Networks

  • Giacomo Albi
  • Lorenzo Pareschi
  • Mattia ZanellaEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 494)


In this work we are interested in the modelling and control of opinion dynamics spreading on a time evolving network with scale-free asymptotic degree distribution. The mathematical model is formulated as a coupling of an opinion alignment system with a probabilistic description of the network. The optimal control problem aims at forcing consensus over the network, to this goal a control strategy based on the degree of connection of each agent has been designed. A numerical method based on a model predictive strategy is then developed and different numerical tests are reported. The results show that in this way it is possible to drive the overall opinion toward a desired state even if we control only a suitable fraction of the nodes.


Multi-agent systems Consensus dynamics Scale-free networks Collective behavior Model predictive control 



GA acknowledges the support of the ERC-Starting Grant project High-Dimensional Sparse Optimal Control (HDSPCONTR).


  1. 1.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. phys. 74(1), 47–97 (2002)Google Scholar
  2. 2.
    Albi, G., Bongini, M., Cristiani, E., Kalise, D.: Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math 76, 1683–1710 (2016). in pressMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albi, G., Herty, M., Pareschi, L.: Kinetic description of optimal control problems and applications to opinion consensus. Commun. Math. Sci. 13(6), 1407–1429 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Albi, G., Pareschi, L., Zanella, M.: Boltzmann-type control of opinion consensus through leaders. Philos. Trans. R. Soc. A 372(2028), 20140138 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Albi, G., Pareschi, L., Zanella, M.: Uncertainty quantification in control problems for flocking models. Math. Prob. Eng. 2015, 850124 (2015). 14 pMathSciNetCrossRefGoogle Scholar
  6. 6.
    Albi, G., Pareschi, L., Zanella, M.: Opinion dynamics over complex networks: kinetic modeling and numerical methods. Kinet. Relat. Models 10(1), 1–32 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Amaral, L.A.N., Scala, A., Barthélemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. U. S. Am. 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  8. 8.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A: Stat. Meach. Appl. 272(1), 173–187 (1999)CrossRefGoogle Scholar
  9. 9.
    Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Benczik, I.J., Benczick, S.Z., Schmittmann, B., Zia, R.K.: Opinion dynamics on an adaptive random network. Phys. Rev. E 79(4), 046104 (2009)CrossRefGoogle Scholar
  11. 11.
    Bongini, M., Fornasier, M., Fröhlich, F., Haghverdi, L.: Sparse stabilization of dynamical systems driven by attraction and avoidance forces. Netw. Heterogen. Media 9(1), 1–31 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wongkaew, S., Caponigro, M., Borzì, A.: On the control through leadership of the Hegselmann-Krause opinion formation model. Math. Models Methods Appl. Sci. 25(2), 255–282 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chi, L.: Binary opinion dynamics with noise on random networks. Chin. Sci. Bull. 56(34), 3630–3632 (2011)CrossRefGoogle Scholar
  14. 14.
    Das, A., Gollapudi, S., Munagala, K.: Modeling opinion dynamics in social networks. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, ACM (2014)Google Scholar
  15. 15.
    Herty, M., Zanella, M.: Performance bounds for the mean-field limit of constrained dynamics. Preprint (2015)Google Scholar
  16. 16.
    Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Phys. Rev. E 64(4), 046132 (2001)CrossRefGoogle Scholar
  17. 17.
    Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive scale emotional contagion through social networks. Proc. Nat. Acad. Sci. 111(24), 8788–8789 (2014)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.J.: The structure and function on complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pareschi, L., Toscani, G.: Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  20. 20.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefGoogle Scholar
  21. 21.
    Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11(6), 1157–1165 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  23. 23.
    Weisbuch, G.: Bounded confidence and social networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 38(2), 339–343 (2004)CrossRefGoogle Scholar
  24. 24.
    Xie, Y.-B., Zhou, T., Wang, B.-H.: Scale-free networks without growth. Phys. A 387, 1683–1688 (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Giacomo Albi
    • 1
  • Lorenzo Pareschi
    • 2
  • Mattia Zanella
    • 2
    Email author
  1. 1.Faculty of MathematicsTU MünchenGarching (München)Germany
  2. 2.Department of Mathematics and Computer ScienceUniversity of FerraraFerraraItaly

Personalised recommendations