Road Traffic Rules Synthesis Using Grammatical Evolution

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10200)

Abstract

We consider the problem of the automatic synthesis of road traffic rules, motivated by a future scenario in which human and machine-based drivers will coexist on the roads: in that scenario, current road rules may be either unsuitable or inefficient. We approach the problem using Grammatical Evolution (GE). To this end, we propose a road traffic model which includes concepts amenable to be regulated (e.g., lanes, intersections) and which allows drivers to temporarily evade traffic rules when there are no better alternatives. In our GE framework, each individual is a set of rules and its fitness is a weighted sum of traffic efficiency and safety, as resulting from a number of simulations where all drivers are subjected to the same rules. Experimental results show that our approach indeed generates rules leading to a safer and more efficient traffic than enforcing no rules or rules similar to those currently used.

Keywords

Simulation Road traffic model Stochastic evolution Driverless cars 

References

  1. 1.
    Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Syntactical similarity learning by means of grammatical evolution. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 260–269. Springer, Cham (2016). doi:10.1007/978-3-319-45823-6_24 CrossRefGoogle Scholar
  2. 2.
    Brabazon, A., O’Neill, M.: Evolving technical trading rules for spot foreign-exchange markets using grammatical evolution. CMS 1(3–4), 311–327 (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Drake, J.H., Kililis, N., Özcan, E.: Generation of VNS components with grammatical evolution for vehicle routing. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 25–36. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37207-0_3 CrossRefGoogle Scholar
  4. 4.
    Greene, J.D.: Our driverless dilemma. Science 352(6293), 1514–1515 (2016)CrossRefGoogle Scholar
  5. 5.
    Kirkpatrick, K.: The moral challenges of driverless cars. Commun. ACM 58(8), 19–20 (2015). http://doi.acm.org/10.1145/2788477 CrossRefGoogle Scholar
  6. 6.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT press (1992)Google Scholar
  7. 7.
    Lourenço, N., Pereira, F.B., Costa, E.: SGE: a structured representation for grammatical evolution. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 136–148. Springer, Cham (2016). doi:10.1007/978-3-319-31471-6_11 Google Scholar
  8. 8.
    Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of attribute-based access control policies. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 351–365. Springer, Cham (2015). doi:10.1007/978-3-319-15934-8_24 Google Scholar
  9. 9.
    O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: \(\pi \)Grammatical evolution. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 617–629. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24855-2_70 CrossRefGoogle Scholar
  10. 10.
    Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous vehicles. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1658–1665. IEEE (2015)Google Scholar
  11. 11.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930 CrossRefGoogle Scholar
  12. 12.
    Sanchez, J.J., Galan, M., Rubio, E.: Applying a traffic lights evolutionary optimization technique to a real case: “las ramblas” area in santa cruz de tenerife. IEEE Trans. Evol. Comput. 12(1), 25–40 (2008)CrossRefGoogle Scholar
  13. 13.
    Tachet, R., Santi, P., Sobolevsky, S., Reyes-Castro, L.I., Frazzoli, E., Helbing, D., Ratti, C.: Revisiting street intersections using slot-based systems. PLoS one 11(3), e0149607 (2016)CrossRefGoogle Scholar
  14. 14.
    Tumova, J., Hall, G.C., Karaman, S., Frazzoli, E., Rus, D.: Least-violating control strategy synthesis with safety rules. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC 2013, pp. 1–10. ACM, New York (2013). http://doi.acm.org/10.1145/2461328.2461330
  15. 15.
    Vanholme, B., Gruyer, D., Lusetti, B., Glaser, S., Mammar, S.: Highly automated driving on highways based on legal safety. IEEE Trans. Intell. Transp. Syst. 14(1), 333–347 (2013)CrossRefGoogle Scholar
  16. 16.
    Wen, W.: A dynamic and automatic traffic light control expert system for solving the road congestion problem. Expert Syst. Appl. 34(4), 2370–2381 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations