Advertisement

An Online Packing Heuristic for the Three-Dimensional Container Loading Problem in Dynamic Environments and the Physical Internet

  • Chi Trung Ha
  • Trung Thanh Nguyen
  • Lam Thu Bui
  • Ran Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10200)

Abstract

In this paper, we consider the online three-dimensional container loading problem. We develop a novel online packing algorithm to solve the three-dimensional bin packing problem in the online case where items are not known well in advance and they have to be packed in real-time when they arrive. This is relevant in many real-world scenarios such as automated cargo loading in warehouses. This is also relevant in the new logistics model of Physical Internet. The effectiveness of the online packing heuristic is evaluated on a set of generated data. The experimental results show that the algorithm could solve the 3D container loading problems in online fashion and is competitive against other algorithms both in the terms of running time, space utilization and the number of bins.

Keywords

Dynamic optimization Online optimization Dynamic environments 3D bin packing problem 3D container loading problem Online packing heuristic Physical internet Benchmark problems 

Notes

Acknowledgement

This work is supported by a Newton Institutional Links grant funded by the UK BEIS via the British Council, a Newton Research Collaborations Programme (3) grant funded by the UK BEIS via the Royal Academy of Engineering, and a Seed-corn project funded by the Chartered Institute of Logistics and Transport.

The authors thank anonymous reviews for their suggestions and contributions and corresponding editor for his/her valuable efforts.

References

  1. 1.
    Bui, L.T., Baker, S., Bender, A., Abbass, H.A., Barlow, M., Saker, R.: A grid-based heuristic for two-dimensional packing problems. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2329–2336 (2011)Google Scholar
  2. 2.
    Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Oper. Res. 48, 256–267 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anily, S., Bramel, J., Simchi-Levi, D.: Worst-case analysis of heuristics for the bin packing problem with general cost structures. Oper. Res. 42, 287–298 (1994)CrossRefMATHGoogle Scholar
  4. 4.
    Scheithauer, G.: Algorithms for the container loading problem. In: Gaul, W., et al. (eds.) Operations Research Proceedings 1991, pp. 445–452. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Bortfeldt, A., Wäscher, G.: Constraints in container loading–a state-of-the-art review. Eur. J. Oper. Res. 229, 1–20 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zhao, X., Bennell, J.A., Bektaş, T., Dowsland, K.: A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res. 23, 287–320 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Junqueira, L., Morabito, R., Yamashita, D.S.: Three-dimensional container loading models with cargo stability and load bearing constraints. Comput. Oper. Res. 39, 74–85 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Moon, I., Nguyen, T.V.L.: Container packing problem with balance constraints. OR Spectr. 36, 837–878 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Liu, D.S., Tan, K.C., Huang, S.Y., Goh, C.K., Ho, W.K.: On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur. J. Oper. Res. 190, 357–382 (2008)Google Scholar
  10. 10.
    Montreuil, B.: Toward a Physical Internet: meeting the global logistics sustainability grand challenge. Logistics Res. 3, 71–87 (2011)CrossRefGoogle Scholar
  11. 11.
    ALICE, Global Supply Network Coordination and Collaboration research & innovation roadmap. ALICE - Alliance for Logistics Innovation through Collaboration in Europe (2014)Google Scholar
  12. 12.
    Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)CrossRefGoogle Scholar
  13. 13.
    Berndt, S., Jansen, K., Klein, K.-M.: Fully dynamic bin packing revisited, arXiv preprint arXiv:1411.0960 (2014)
  14. 14.
    Coffman, J., Edward, G., Garey, M.R., Johnson, D.S.: Dynamic bin packing. SIAM J. Comput. 12, 227–258 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Epstein, L., Levy, M.: Dynamic multi-dimensional bin packing. J. Discrete Algorithms 8, 356–372 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Feng, X., Moon, I., Shin, J.: Hybrid genetic algorithms for the three-dimensional multiple container packing problem. Flex. Serv. Manuf. J. 27, 451–477 (2015)CrossRefGoogle Scholar
  17. 17.
    Li, X., Zhang, K.: A hybrid differential evolution algorithm for multiple container loading problem with heterogeneous containers. Comput. Ind. Eng. 90, 305–313 (2015)CrossRefGoogle Scholar
  18. 18.
    Lodi, A., Martello, S., Vigo, D.: Heuristic algorithms for the three-dimensional bin packing problem. Eur. J. Oper. Res. 141, 410–420 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Martello, S., Pisinger, D., Vigo, D., Boef, E.D., Korst, J.: Algorithm 864: general and robot-packable variants of the three-dimensional bin packing problem. ACM Trans. Math. Softw. (TOMS) 33, 7 (2007)Google Scholar
  20. 20.
    Baldi, M.M., Crainic, T.G., Perboli, G., Tadei, R.: The generalized bin packing problem. Transp. Res. Part E Logistics Transp. Rev. 48, 1205–1220 (2012)CrossRefMATHGoogle Scholar
  21. 21.
    Crainic, T.G., Perboli, G., Tadei, R.: Extreme point-based heuristics for three-dimensional bin packing. Informs J. Comput. 20, 368–384 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Parreño, F., Alvarez-Valdés, R., Oliveira, J., Tamarit, J.M.: A hybrid GRASP/VND algorithm for two-and three-dimensional bin packing. Ann. Oper. Res. 179, 203–220 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gonçalves, J.F., Resende, M.G.: A biased random key genetic algorithm for 2D and 3D bin packing problems. Int. J. Prod. Econ. 145, 500–510 (2013)CrossRefGoogle Scholar
  24. 24.
    Gonçalves, J.F., Resende, M.G.C.: A parallel multi-population biased random-key genetic algorithm for a container loading problem. Comput. Oper. Res. 39, 179–190 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lai, K., Chan, J.W.: Developing a simulated annealing algorithm for the cutting stock problem. Comput. Ind. Eng. 32, 115–127 (1997)CrossRefGoogle Scholar
  26. 26.
    Christensen, S.G., Rousøe, D.M.: Container loading with multi-drop constraints. Int. Trans. Oper. Res. 16, 727–743 (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Tiwari, S., Fadel, G., Fenyes, P.: A fast and efficient compact packing algorithm for free-form objects. In: ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 543–552 (2008)Google Scholar
  28. 28.
    Karabulut, K., İnceoğlu, M.M.: A hybrid genetic algorithm for packing in 3d with deepest bottom left with fill method. In: International Conference on Advances in Information Systems, pp. 441–450 (2004)Google Scholar
  29. 29.
    Kang, K., Moon, I., Wang, H.: A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem. Appl. Math. Comput. 219, 1287–1299 (2012)MathSciNetMATHGoogle Scholar
  30. 30.
    Wang, H., Chen, Y.: A hybrid genetic algorithm for 3d bin packing problems. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp. 703–707 (2010)Google Scholar
  31. 31.
    Wang, R., Nguyen, T.T., Kavakeb, S., Yang, Z., Li, C.: Benchmarking Dynamic Three-Dimensional Bin Packing Problems Using Discrete-Event Simulation. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 266–279. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31153-1_18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Le Quy Don Technical UniversityHanoiVietnam
  2. 2.Liverpool John Moores UniversityLiverpoolUK

Personalised recommendations