Privacy Salience: Taxonomies and Research Opportunities

  • Meredydd WilliamsEmail author
  • Jason R. C. Nurse
  • Sadie Creese
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 498)


Privacy is a well-understood concept in the physical world, with us all desiring some escape from the public gaze. However, while individuals might recognise locking doors as protecting privacy, they have difficulty practising equivalent actions online. Privacy salience considers the tangibility of this important principle; one which is often obscured in digital environments. Through extensively surveying a range of studies, we construct the first taxonomies of privacy salience. After coding articles and identifying commonalities, we categorise works by their methodologies, platforms and underlying themes. While web browsing appears to be frequently analysed, the Internet-of-Things has received little attention. Through our use of category tuples and frequency matrices, we then explore those research opportunities which might have been overlooked. These include studies of targeted advertising and its affect on salience in social networks. It is through refining our understanding of this important topic that we can better highlight the subject of privacy.


Privacy salience Privacy awareness Taxonomy IoT 


  1. 1.
    Acquisti, A.: Nudging privacy: the behavioral economics of personal information. IEEE Secur. Priv. 7(6), 82–85 (2009)CrossRefGoogle Scholar
  2. 2.
    Adjerid, I., Acquisti, A., Loewenstein, G.: Framing and the malleability of privacy choices. In: Proceedings of the 13th Workshop on the Economics of Information Security (2014)Google Scholar
  3. 3.
    Adjerid, I., Acquisti, A., Brandimarte, L., Loewenstein, G.: Sleights of privacy: framing, disclosures, and the limits of transparency. In: Proceedings of the Ninth Symposium on Usable Privacy and Security (2013)Google Scholar
  4. 4.
    Aguirre, E., Roggeveen, A., Grewal, D., Wetzels, M.: The personalization-privacy paradox: implications for new media. J. Consum. Mark. 33(2), 98–110 (2016)CrossRefGoogle Scholar
  5. 5.
    Almuhimedi, H., Schaub, F., Sadeh, N., Adjerid, I., Acquisti, A., Gluck, J., Cranor, L.F., Agarwal, Y.: Your location has been shared 5,398 times!: a field study on mobile app privacy nudging. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 787–796 (2015)Google Scholar
  6. 6.
    Arshad, F.: Privacy fox - a JavaScript-based P3P agent for mozilla firefox. Priv. Policy Law Technol. 17, 801–810 (2004)Google Scholar
  7. 7.
    Balebako, R., Schaub, F., Adjerid, I., Acquisti, A., Cranor, L.: The impact of timing on the salience of smartphone app privacy notices. In: Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 63–74 (2015)Google Scholar
  8. 8.
    Barnes, S.: A privacy paradox: social networking in the United States. First Monday, 11(9) (2006).
  9. 9.
    Becker, J., Chen, H.: Measuring privacy risk in online social networks. In: Proceedings of the 2009 Web 2.0 Security and Privacy Workshop (2009)Google Scholar
  10. 10.
    Berscheid, E.: Privacy: a hidden variable in experimental social psychology. J. Soc. Issues 33(3), 85–101 (1977)CrossRefGoogle Scholar
  11. 11.
    Bonneau, J., Preibusch, S.: The privacy jungle: on the market for data protection in social networks. In: Moore, T., Pym, D., Loannidis, C. (eds.) Economics of Information Security and Privacy, pp. 121–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Bravo-Lillo, C., Komanduri, S., Cranor, L., Reeder, R., Sleeper, M., Downs, J., Schechter, S.: Your attention please: designing security-decision UIs to make genuine risks harder to ignore. In: Proceedings of the Ninth Symposium on Usable Privacy and Security (2013)Google Scholar
  13. 13.
    Christin, D., Michalak, M., Hollick, M.: Raising user awareness about privacy threats in participatory sensing applications through graphical warnings. In: Proceedings of International Conference on Advances in Mobile Computing & Multimedia, pp. 445–455 (2013)Google Scholar
  14. 14.
    Cichy, P., Salge, T.: The evolution of privacy norms: mapping 35 years of technology-related privacy discourse, 1980–2014. In: 2015 International Conference on Information Systems (2015)Google Scholar
  15. 15.
    Clarke, R.: Introduction to dataveillance and information privacy, and definitions of terms. Technical report (1999).
  16. 16.
    Creese, S., Lamberts, K.: Can cognitive science help us make information risk more tangible online? In: Proceedings of the WebSci 2009 (2009)Google Scholar
  17. 17.
    Federrath, H. (ed.): Designing Privacy Enhancing Technologies. LNCS, vol. 2009. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  18. 18.
    Frey, J.: An experiment with a confidentiality reminder in a telephone survey. Public Opin. Q. 50(2), 267–269 (1986)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gisch, M., De Luca, A., Blanchebarbe, M.: The privacy badge: a privacy-awareness user interface for small devices. In: Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems, pp. 583–586 (2007)Google Scholar
  20. 20.
    Goldfarb, A., Tucker, C.: Online display advertising: targeting and obtrusiveness. Mark. Sci. 30(3), 389–404 (2011)CrossRefGoogle Scholar
  21. 21.
    Good, N., Grossklags, J., Mulligan, D., Konstan, J.: Noticing notice: a large-scale experiment on the timing of software license agreements. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 607–616 (2007)Google Scholar
  22. 22.
    de Hoog, G.: Methodology of taxonomy. Taxon 30(4), 779–783 (1981)CrossRefGoogle Scholar
  23. 23.
    Houghton, D., Joinson, A.: Privacy, social network sites, and social relations. J. Technol. Hum. Serv. 28(1–2), 74–94 (2010)CrossRefGoogle Scholar
  24. 24.
    Hughes-Roberts, T., Kani-Zabihi, E.: On-line privacy behavior: using user interfaces for salient factors. J. Comput. Commun. 2(4), 220 (2014)CrossRefGoogle Scholar
  25. 25.
    Hughes-Roberts, T.: Reminding users of their privacy at the point of interaction: the effect of privacy salience on disclosure behaviour. In: Tryfonas, T., Askoxylakis, I. (eds.) HAS 2015. LNCS, vol. 9190, pp. 347–356. Springer, Cham (2015). doi: 10.1007/978-3-319-20376-8_31 CrossRefGoogle Scholar
  26. 26.
    Hui, K., Teo, H., Lee, S.: The value of privacy assurance: an exploratory field experiment. MIS Q. 31(1), 19–33 (2007)Google Scholar
  27. 27.
    Jackson, J., Allum, N., Gaskell, G.: Perceptions of Risk in Cyberspace. Edward Elgar, Cheltenham (2005)Google Scholar
  28. 28.
    John, L., Acquisti, A., Loewenstein, G.: The best of strangers: context dependent willingness to divulge personal information. In: The Best of Strangers. Pittsburgh, Carnegie Mellon-University (2009)Google Scholar
  29. 29.
    Johnson, E., Bellman, S., Lohse, G.: Defaults, framing and privacy: why opting in-opting out. Mark. Lett. 13(1), 5–15 (2002)CrossRefGoogle Scholar
  30. 30.
    Joinson, A., Paine, C., Buchanan, T., Reips, U.: Measuring self-disclosure online: blurring and non-response to sensitive items in web-based surveys. Comput. Hum. Behav. 24(5), 2158–2171 (2008)CrossRefGoogle Scholar
  31. 31.
    Kani-Zabihi, E., Helmhout, M.: Increasing service users’ privacy awareness by introducing on-line interactive privacy features. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 131–148. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29615-4_10 CrossRefGoogle Scholar
  32. 32.
    Konomi, S.: Personal privacy assistants for RFID users. In: Proceedings of the International Workshop Series on RFID, pp. 1–6 (2004)Google Scholar
  33. 33.
    LaRose, R., Rifon, N.: Promoting i-safety: effects of privacy warnings and privacy seals on risk assessment and online privacy behavior. J. Consum. Aff. 41(1), 127–149 (2007)CrossRefGoogle Scholar
  34. 34.
    Lederer, S., Hong, J., Dey, A., Landay, J.: Personal privacy through understanding and action: five pitfalls for designers. Pers. Ubiquit. Comput. 8(6), 440–454 (2004)CrossRefGoogle Scholar
  35. 35.
    Lipford, H., Besmer, A., Watson, J.: Understanding privacy settings in Facebook with an audience view. In: Proceedings of the First Conference on Usability, Psychology, and Security, pp. 1–8 (2008)Google Scholar
  36. 36.
    Malandrino, D., Petta, A., Scarano, V., Serra, L., Spinelli, R., Krishnamurthy, B.: Privacy awareness about information leakage: who knows what about me?. In: Proceedings of the 12th ACM Workshop on Privacy in the Electronic Society, pp. 279–284 (2013)Google Scholar
  37. 37.
    Marreiros, H., Tonin, M., Vlassopoulos, M., Schraefel, M.: ‘Now that you mention it’: A survey experiment on information, salience and online privacy. In: CESifo Working Paper, Ludwig Maximilian University of Munich (2016)Google Scholar
  38. 38.
    Oxford English Dictionary: Salience (2016).
  39. 39.
    Oxford English Dictionary: Taxonomy (2016).
  40. 40.
    Rajivan, P., Camp, J.: Influence of privacy attitude and privacy cue framing on android app choices. In: Twelfth Symposium on Usable Privacy and Security (2016)Google Scholar
  41. 41.
    Reamer, F.: Protecting research subjects and unintended consequences: the effect of guarantees of confidentiality. Public Opinion Q. 43(4), 497–506 (1979)CrossRefGoogle Scholar
  42. 42.
    Schaub, F., Balebako, R., Durity, A., Cranor, L.F.: A design space for effective privacy notices. In: Proceedings of the Eleventh Symposium On Usable Privacy and Security, pp. 1–17 (2015)Google Scholar
  43. 43.
    Schaub, F., Marella, A., Kalvani, P., Ur, B., Pan, C., Forney, E., Cranor, L.: Watching them watching me: Browser extensions’ impact on user privacy awareness and concern. In: NDSS Workshop on Usable Security (2016)Google Scholar
  44. 44.
    Stemler, S.: An overview of content analysis. Pract. Assess. Res. Eval. 7(17), 137–146 (2001)Google Scholar
  45. 45.
    Stutzman, F., Kramer-Duffield, J.: Friends only: examining a privacy-enhancing behavior in Facebook. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1553–1562 (2010)Google Scholar
  46. 46.
    Thomas, D.: A general inductive approach for analyzing qualitative evaluation data. Am. J. Eval. 27(2), 237–246 (2006)CrossRefGoogle Scholar
  47. 47.
    Tsai, J., Egelman, S., Cranor, L., Acquisti, A.: The impact of privacy indicators on search engine browsing patterns. In: Proceedings of the Fifth Symposium on Usable Privacy and Security (2009)Google Scholar
  48. 48.
    Vail, M., Earp, J., Antón, A.: An empirical study of consumer perceptions and comprehension of web site privacy policies. IEEE Trans. Eng. Manage. 55(3), 442–454 (2008)CrossRefGoogle Scholar
  49. 49.
    Vemou, K., Karyda, M., Kokolakis, S.: Directions for raising privacy awareness in SNS platforms. In: Proceedings of the 18th Panhellenic Conference on Informatics, pp. 1–6 (2014)Google Scholar
  50. 50.
    Wang, N., Zhang, B., Liu, B., Jin, H.: Investigating effects of control and ads awareness on android users’ privacy behaviors and perceptions. In: Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 373–382 (2015)Google Scholar
  51. 51.
    Wang, Y., Leon, P.G., Acquisti, A., Cranor, L.F., Forget, A., Sadeh, N.: A field trial of privacy nudges for Facebook. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2367–2376 (2014)Google Scholar
  52. 52.
    Williams, M., Nurse, J.R.C., Creese, S.: The perfect storm: the privacy paradox and the Internet-of-Things. In: Workshop on Challenges in Information Security and Privacy Management at the 11th International Conference on Availability Reliability and Security (ARES) (2016)Google Scholar
  53. 53.
    Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, pp. 38–48 (2014)Google Scholar
  54. 54.
    Yang, R., Ng, Y., Vishwanath, A.: Do social media privacy policies matter? Evaluating the effects of familiarity and privacy seals on cognitive processing. In: Proceedings of the 48th Hawaii International Conference on System Sciences, pp. 3463–3472 (2015)Google Scholar
  55. 55.
    Ziegeldorf, J.H., Henze, M., Hummen, R., Wehrle, K.: Comparison-based privacy: nudging privacy in social media (position paper). In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA -2015. LNCS, vol. 9481, pp. 226–234. Springer, Cham (2016). doi: 10.1007/978-3-319-29883-2_15 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Meredydd Williams
    • 1
    Email author
  • Jason R. C. Nurse
    • 1
  • Sadie Creese
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations