Evaluating Users’ Affect States: Towards a Study on Privacy Concerns

  • Uchechi Nwadike
  • Thomas Groß
  • Kovila P. L. Coopamootoo
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 498)


Research in psychology suggests that affect influences decision making. Consequently, we ask the question how affect states such as happiness and fear impact a user’s privacy concerns. To investigate this question, we need to prepare the ground in validating methods to induce and measure emotions. While most empirical privacy research is based on self-report questionnaires [20], such an experiment design—and the field at large—will benefit from psycho-physiological tools that offer immediate measurements of the user’s state [11]. To bridge this gap, this study constructs an experiment design that induces emotions and tightly controls this manipulation. Furthermore, it offers a pretest that compares self-report and psycho-physiological tools for measuring users’ affect states. We administer validated video affect stimuli in a within-subject trial, in which participants were exposed to both happy and sad stimuli in random order, after setting a neutral baseline state. The results indicate, first, that participants’ affect states were successfully manipulated using stimuli films. Second, a systematic comparison between the tools indicates their strengths and weaknesses in sensitivity and tightness of confidence intervals, hence lays the foundations for future experiment design. Finally, we contribute an experiment design to investigate the impact of affect state on privacy decision making, which draws on the lessons learned from the experiment.


Privacy concerns Affect states PANAS-X Facereader Emotion recognition Psycho-physiological 


  1. 1.
    Armitage, C.J., Conner, M.: Efficacy of the theory of planned behaviour: a meta-analytic review. Br. J. Soc. Psychol. 40(4), 471–499 (2001)CrossRefGoogle Scholar
  2. 2.
    Baumeister, R.F., Vohs, K.D., DeWall, C.N., Zhang, L.: How emotion shapes behavior: feedback, anticipation, and reflection, rather than direct causation. Pers. Soc. Psychol. Rev. 11(2), 167–203 (2007)CrossRefGoogle Scholar
  3. 3.
    Brodny, G., Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., Wróbel, M.R.: Comparison of selected off-the-shelf solutions for emotion recognition based on facial expressions. In: 2016 9th International Conference on Human System Interactions (HSI), pp. 397–404. IEEE (2016)Google Scholar
  4. 4.
    Burgoon, J.K., Parrott, R., Le Poire, B.A., Kelley, D.L., Walther, J.B., Perry, D.: Maintaining and restoring privacy through communication in different types of relationships. J. Soc. Pers. Relat. 6(2), 131–158 (1989)CrossRefGoogle Scholar
  5. 5.
    Clarke, R.: What’s privacy. In: Australian Law Reform Commission Workshop, vol. 28 (2006)Google Scholar
  6. 6.
    DeCew, J.W.: In Pursuit of Privacy: Law, Ethics, and the Rise of Technology. Cornell University Press, Ithaca (1997)Google Scholar
  7. 7.
    Den Uyl, M., Van Kuilenburg, H.: The faceReader: online facial expression recognition. Proc. Measuring Behav. 30, 589–590 (2005)Google Scholar
  8. 8.
    Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)CrossRefGoogle Scholar
  9. 9.
    Frijda, N.H.: The emotions: Studies in emotion and social interaction. Cambridge University Press, Cambridge (1986)Google Scholar
  10. 10.
    Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cogn. Emot. 9(1), 87–108 (1995)CrossRefGoogle Scholar
  11. 11.
    Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 301–310. ACM (2010)Google Scholar
  12. 12.
    Hall, R.H., Lockwood, N.S., Sheng, H.: Psychophysiological assessment tools for evaluation of learning technologies. In: Yamamoto, S. (ed.) HIMI 2013. LNCS, vol. 8018, pp. 33–42. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39226-9_5 CrossRefGoogle Scholar
  13. 13.
    Kumaraguru, P., Cranor, L.: Privacy indexes: a survey of westin’s studies. Technical report, CMU-ISRI Technical Report (2005)Google Scholar
  14. 14.
    Li, Y.: Empirical studies on online information privacy concerns: literature review and an integrative framework. Commun. Assoc. Inform. Syst. 28(1), 453–496 (2011)Google Scholar
  15. 15.
    Loewenstein, G.F., Weber, E.U., Hsee, C.K., Welch, N.: Risk as feelings. Psychol. Bull. 127(2), 267–286 (2001)CrossRefGoogle Scholar
  16. 16.
    Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns (IUIPC): the construct, the scale, and a causal model. Inf. Syst. Res. 15(4), 336–355 (2004)CrossRefGoogle Scholar
  17. 17.
    Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press, Stanford (2009)Google Scholar
  18. 18.
    Nyshadham, E.A., Castano, D.: Affect and online privacy concerns. SSRN 2051044 (2012)Google Scholar
  19. 19.
    Paine, C., Reips, U.D., Stieger, S., Joinson, A., Buchanan, T.: Internet users’ perceptions of ‘privacy concerns’ and ‘privacy actions’. Int. J. Hum. Comput. Stud. 65(6), 526–536 (2007)CrossRefGoogle Scholar
  20. 20.
    Preibusch, S.: Guide to measuring privacy concern: review of survey and observational instruments. Int. J. Hum. Comput. Stud. 71(12), 1133–1143 (2013)CrossRefGoogle Scholar
  21. 21.
    Ray, R.D.: Emotion elicitation using films. In: Handbook of Emotion Elicitation and Assessment, pp. 9–28 (2007)Google Scholar
  22. 22.
    Schaefer, A., Nils, F., Sanchez, X., Philippot, P.: Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers. Cogn. Emot. 24(7), 1153–1172 (2010)CrossRefGoogle Scholar
  23. 23.
    Slovic, P., Peters, E., Finucane, M.L., MacGregor, D.G.: Affect, risk, and decision making. Health Psychol. 24(4S), S35–S40 (2005)CrossRefGoogle Scholar
  24. 24.
    Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: measuring individuals’ concerns about organizational practices. MIS Q. 20(2), 167–196 (1996)CrossRefGoogle Scholar
  25. 25.
    Sniehotta, F.F., Presseau, J., Araújo-Soares, V.: Time to retire the theory of planned behaviour. Health Psychol. Rev. 8(1), 1–7 (2014)CrossRefGoogle Scholar
  26. 26.
    Stewart, K.A., Segars, A.H.: An empirical examination of the concern for information privacy instrument. Inf. Syst. Res. 13(1), 36–49 (2002)CrossRefGoogle Scholar
  27. 27.
    Viechtbauer, W., et al.: Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36(3), 1–48 (2010)CrossRefGoogle Scholar
  28. 28.
    Wakefield, R.: The influence of user affect in online information disclosure. J. Strateg. Inf. Syst. 22(2), 157–174 (2013)CrossRefGoogle Scholar
  29. 29.
    Warren, S.D., Brandeis, L.D.: The right to privacy. Harvard Law Rev. 4(5), 193–220 (1890)CrossRefGoogle Scholar
  30. 30.
    Watson, D., Clark, L.A.: The PANAS-X: Manual for the positive and negative affect schedule - expanded form. Technical report, University of Iowa, Department of Psychology (1999)Google Scholar
  31. 31.
    Westin, A.F.: Privacy and freedom. Wash. Lee Law Rev. 25(1), 166 (1968)Google Scholar
  32. 32.
    Xu, H., Dinev, T., Smith, H.J., Hart, P.: Examining the formation of individual’s privacy concerns: toward an integrative view. In: ICIS 2008 Proceedings, p. 6 (2008)Google Scholar
  33. 33.
    Yang, S., Wang, K.: The influence of information sensitivity compensation on privacy concern and behavioral intention. ACM SIGMIS Database 40(1), 38–51 (2009)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Uchechi Nwadike
    • 1
  • Thomas Groß
    • 1
  • Kovila P. L. Coopamootoo
    • 2
  1. 1.Newcastle UniversityNewcastle upon TyneUK
  2. 2.University of DerbyDerbyUK

Personalised recommendations