Supporting Cost-Efficient Multi-tenant Database Services with Service Level Objectives (SLOs)

  • Yifeng Luo
  • Junshi Guo
  • Jiaye Zhu
  • Jihong Guan
  • Shuigeng Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10177)


Quality of Service (QoS) is at the core of the vision of Database as a Service (DBaaS). Traditional approaches in DBaaS often reserve computation resources (e.g. CPU and memory) to satiate tenants’ QoS guarantees under various circumstances, which inevitably results in poor resource utilization, as the tenants’ actual workloads are usually below their expectations described by their Service Level Objectives (SLOs). In this paper, we propose a novel scheme FrugalDB to enhance resource utilization for DBaaS systems with QoS guarantees. FrugalDB accommodates two independent database engines, an in-memory engine for heavy workloads with tight SLOs, and a disk-based engine for light workloads with loose SLOs. By allocating each tenant’ workload to an appropriate engine via workload migration, this dual-engine scheme can substantially save computation resources, and thus consolidate more tenants on a single database server. FrugalDB tries to minimize workload migration cost incurred in moving workloads between the two engines. By an effective workload estimation method and an efficient migration schedule algorithm, FrugalDB responds quickly to workload changes and executes workload migrations with minimal overhead. We evaluate FrugalDB with extensive experiments, which show that it achieves high tenant consolidation rate yet with few performance SLO violations.


Cloud computing Database-as-a-Service Multi-tenancy Workload consolidation Workload migration 


  1. 1.
    Agrawal, D., Abbadi, A., Emekci, F., Metwally, A.: Database management as a service: challenges and opportunities. In: Proceedings of ICDE 2009, pp. 1709–1716 (2009)Google Scholar
  2. 2.
    Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-tenant database for software as a service: schema-mapping techniques. In: Proceedings of SIGMOD 2008, pp. 1195–1206 (2008)Google Scholar
  3. 3.
    Cecchet, E., Singh, R., Sharma, U., Shenoy, P.: Dolly: Virtualization-driven database provisioning for the cloud. In: Proceedings of VEE 2011, pp. 51–62 (2011)Google Scholar
  4. 4.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of SOCC 2010, pp. 143–154 (2010)Google Scholar
  5. 5.
    Curino, C., Jones, E.P., Madden, S., Balakrishnan, H.: Workload-aware database monitoring and consolidation. In: Proceedings of SIGMOD 2011, pp. 832–843 (2011)Google Scholar
  6. 6.
    Das, S., Narasayya, V.R., Li, F., Syamala, M.: CPU sharing techniques for performance isolation in multi-tenant relational database-as-a-service. In: Proceedings of VLDB 2014, vol. 7, no. 1, pp. 37–48 (2014)Google Scholar
  7. 7.
    Elmore, A.J., Das, S., Pucher, A., Agrawal, D., Abbadi, A.E., Yan, X.: Characterizing tenant behavior for placement and crisis mitigation in multitenant DBMSS. In: Proceedings of SIGMOD 2013, pp. 517–528 (2013)Google Scholar
  8. 8.
    Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proceedings of ICDE 2002, pp. 29–39 (2002)Google Scholar
  9. 9.
  10. 10.
    Hui, M., Jiang, D., Li, G., Zhou, Y.: Supporting database applications as a service. In: Proceedings of ICDE 2009, pp. 832–843 (2009)Google Scholar
  11. 11.
    Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: Proceedings of BTW 2007, pp. 514–521 (2007)Google Scholar
  12. 12.
    Lang, W., Shankar, S., Patel, J.M., Kalhan, A.: Towards multi-tenant performance SLOs. In: Proceedings of ICDE 2012, pp. 702–713 (2012)Google Scholar
  13. 13.
    Lehner, W., Sattler, K.: Database as a service (DBaaS). In: Proceedings of ICDE 2010, pp. 1216–1217 (2010)Google Scholar
  14. 14.
    Narasayya, V., Das, S., Syamala, M., Chandramouli, B., Chaudhuri, S.: SQLVM: performance isolation in multi-tenant relational database-as-a-service. In: Proceedings of CIDR 2013 (2013)Google Scholar
  15. 15.
    Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-Clouds: managing performance interference effects for QoS-aware clouds. In: Proceedings of EuroSys 2010, pp. 237–250 (2010)Google Scholar
  16. 16.
    Schaffner, J., Januschowski, T.: Realistic tenant traces for enterprise DBaaS. In: Workshops Proceedings of ICDE 2013, pp. 29–35 (2013)Google Scholar
  17. 17.
    Schiller, O., Schiller, B., Brodt, A., Mitschang, B.: Native support of multi-tenancy in RDBMS for software as a service. In: Proceedings of EDBT 2011, pp. 117–128 (2011)Google Scholar
  18. 18.
    Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: Proceedings of SOCC 2011 (2011)Google Scholar
  19. 19.
    Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.: Automatic virtual machine configuration for database workloads. In: Proceedings of SIGMOD 2008, pp. 953–966 (2008)Google Scholar
  20. 20.
    Soundararajan, G., Lupei, D., Ghanbari, S., Popescu, A.D., Chen, J., Amza, C.: Dynamic resource allocation for database servers running on virtual storage. In: Proceedings of FAST 2012, pp. 71–84 (2012)Google Scholar
  21. 21.
    Weissman, C., Bobrowski, S.: The design of the multitenant internet application development platform. In: Proceedings of SIGMOD 2009, pp. 889–896 (2009)
  22. 22.
    Reinwald, B.: Multitenancy. UW MSR Summer Institute (2010)Google Scholar
  23. 23.
    Wong, P., He, Z., Lo, E.: Parallel analytics as a service. In: Proceedings of SIGMOD 2013, pp. 25–36 (2013)Google Scholar
  24. 24.
    Xiong, P., Chi, Y., Zhu, S., Moon, H.J., Pu, C., Hacigms, H.: Intelligent management of virtualized resources for database systems in cloud environment. In: Proceedings of ICDE 2011, pp. 87–98 (2011)Google Scholar
  25. 25.
    Xiong, P., Chi, Y., Zhu, S., Tatemura, J., Pu, C., Hacigms, H.: ActiveSLA: a profit-oriented admission control framework for database-as-a-service providers. In: Proceedings of SOCC 2011 (2011)Google Scholar
  26. 26.
    Narasayya, V., Menache, I., Singh, M., Li, F., Syamala, M., Chaudhuri, S.: Sharing buffer pool memory in multitenant relational database-as-a-service. In: Proceedings of VLDB 2015, pp. 726–737 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yifeng Luo
    • 1
  • Junshi Guo
    • 1
  • Jiaye Zhu
    • 1
  • Jihong Guan
    • 2
  • Shuigeng Zhou
    • 1
  1. 1.Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghaiChina
  2. 2.Department of Computer Science and TechnologyTongji UniversityShanghaiChina

Personalised recommendations