Evolving Mondrian-Style Artworks

  • Miri Weiss Cohen
  • Leticia Cherchiglia
  • Rachel Costa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10198)

Abstract

This paper describes a Genetic Algorithm (GA) software system for automatically generating Mondrian-style symmetries and abstract artwork. The research examines Mondrian’s paintings from 1922 through 1932 and analyses the balances, color symmetries and composition in these paintings. We used a set of eleven criteria to define the automated system. We then translated and formulized these criteria into heuristics and criteria that can be measured and used in the GA algorithm. The software includes a module that provides a range of GA parameter values for interactive selection. Despite a number of limitations, the method yielded high quality results with colors close to those of Mondrian and rectangles that did not overlap and fit the canvas.

Keywords

Art- style mondrian Genetic algorithm Computer art 

References

  1. 1.
    Milner, J.: Mondrian. Phaidon Press, New York (2011)Google Scholar
  2. 2.
    Seuphor, M.: Piet Mondrian: Life and Work. Harry N. Abrams Inc, New York (1957)Google Scholar
  3. 3.
    Henning, E.B.: A classic painting by Piet Mondrian. Bull. Clevel. Museum Art 55(8), 243–249 (1968)Google Scholar
  4. 4.
    Hill, A.: Art and mathesis: Mondrian’s structures. Leonardo 1(3), 233–242 (1968)CrossRefGoogle Scholar
  5. 5.
    Taylor, R.: Pollock, Mondrian and nature: recent scientific investigations. Chaos Complex. Lett. 1(3), 265–277 (2003)MATHGoogle Scholar
  6. 6.
    Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Berlin Heidelberg (2008)Google Scholar
  7. 7.
    Locher, P.J.: The usefulness of eye movement recordings to subject an aesthetic episode with visual art to empirical scrutiny. Psychol. Sci. 48(2), 106–114 (2006)Google Scholar
  8. 8.
    McManus, I.C., Cheema, B., Stoker, J.: The aesthetics of composition: a study of Mondrian. Empirical Stud. Arts 11, 83–94 (1993)CrossRefGoogle Scholar
  9. 9.
    Latto, R., Brain, D., Kelly, B.: An oblique effect in aesthetics: Homage to Mondrian (1872–1944). Perception 29(8), 981–987 (2000)CrossRefGoogle Scholar
  10. 10.
    Noll, A.M.: Human or Machine: a subjective comparison of Piet Mondrian’s “composition with Lines” (1917) and a computer-generated picture. Psychol. Record 16, 1–10 (1966)Google Scholar
  11. 11.
    Schufreider, G.: Overpowering the center: three compositions by Mondrian. J. Aesthetics Art Criticism 44(1), 13–28 (1985)CrossRefGoogle Scholar
  12. 12.
    Vaughan, W.: The Mondrian Maker. Supplement to Computers and Art History Group, First Issue (1985)Google Scholar
  13. 13.
    Michelson, A.: De Stijl, Its Other Face: Abstraction and Cacophony, or What Was the Matter with Hegel? (1982). Retrieved http://www.jstor.org/stable/778361
  14. 14.
    Blotkamp, C.: Mondrian: The Art of Destruction. Reaktion Books, London (1994)Google Scholar
  15. 15.
    Bois, Y.A., Joosten, J., Rudenstine, A.Z., Janssen, H.: Piet Mondrian 1872–1944. Leonardo Arte, Milan (1994)Google Scholar
  16. 16.
    Overy, P.: Here-I-Am-Again-Piet: a Mondrian for the Nineties. Art Hist. 18(4), 584–595 (1995)CrossRefGoogle Scholar
  17. 17.
    Zhang, K., Yu, J.: Generation of kandinsky art. Leonardo 49(1), 48–54 (2016)CrossRefGoogle Scholar
  18. 18.
    Eiben, E.: Evolutionary reproduction of Dutch masters: the Mondrian and Escher evolvers. In: Juan Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series, pp. 211–224. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    de Silva Garza, A.G., Lores, A.Z.: A cognitive evaluation of a computer system for generating Mondrian-like artwork. In: Gero, J.S. (ed.) Design Computing and Cognition ’04, pp. 79–96. Kluwer Academic Publishers, Worcester, Massachusetts (2004)CrossRefGoogle Scholar
  20. 20.
    Bentley, P., Corne, D.W. (eds.): Creative Evolutionary Systems. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  21. 21.
    Di Paola, S., Gabora, L.: Incorporating characteristics of human creativity into an evolutionary art algorithm. Genet. Program Evolvable Mach. 10(2), 97–110 (2009). doi:10.1007/s10710-008-9074-x CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Machado, P., Correia, J.: Semantic aware methods for evolutionary art. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 301–308. ACM, New York (2014). doi:http://dx.doi.org/10.1145/2576768.2598293
  24. 24.
    Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29142-5_5 CrossRefGoogle Scholar
  25. 25.
    Bergen, S.R.: Evolving stylized images using a user-interactive genetic algorithm. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, New York, NY, USA, ACM, pp. 2745–2752 (2009)Google Scholar
  26. 26.
    Cook, T.E.: GAUGUIN: generating art using genetic algorithms and user input naturally. In: Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom (2007)Google Scholar
  27. 27.
    Silva Garza, A.G., Lores, A.Z.: Case-based art. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 237–251. Springer, Heidelberg (2005). doi:10.1007/11536406_20 CrossRefGoogle Scholar
  28. 28.
    Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1991), Vol. 25, No. 4, pp. 319–328 (1991)Google Scholar
  29. 29.
    Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2007)Google Scholar
  30. 30.
    Trist, K., Ciesielski, V., Barile, P.: Can’t see the forest: using an evolutionary algorithm to produce an animated artwork. In: Huang, F., Wang, R.-C. (eds.) ArtsIT 2009. LNICSSITE, vol. 30, pp. 255–262. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11577-6_32 CrossRefGoogle Scholar
  31. 31.
    Liu, H., Liu, X.: generative art images by complex functions based genetic algorithm. In: León-Rovira, N. (ed.) CAI 2007. ITIFIP, vol. 250, pp. 125–134. Springer, Heidelberg (2007). doi:10.1007/978-0-387-75456-7_13 CrossRefGoogle Scholar
  32. 32.
    den Heijer, E., Eiben, A.E.: Using aesthetic measures to evolve art. In: IEEE Congress on Evolutionary Computation, pp. 311–320. IEEE Press (2010)Google Scholar
  33. 33.
    Johnson, M.G., Muday, J.A., Schirillo, J.A.: When viewing variations in paintings by mondrian, aesthetic preferences correlate with pupil size. Psychol. Aesthetics Creativity Arts 4(3), 161–167 (2010). doi:10.1037/a0018155 CrossRefGoogle Scholar
  34. 34.
    Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)Google Scholar
  35. 35.
    Heijer, E.: Evolving glitch art. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 109–120. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36955-1_10 CrossRefGoogle Scholar
  36. 36.
    Goldberg, D.E., Kalyanmoy, D.: A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)MathSciNetGoogle Scholar
  37. 37.
    Chuang, Y.-C., Chen, C.-T., Hwang, C.: A real-coded genetic algorithm with a 74-direction-based crossover operator. Inf. Sci. 305, 320–348 (2015)CrossRefGoogle Scholar
  38. 38.
    Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithms. Int. J. Eng. Sci. Technol. 3(5), 3792–3797 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miri Weiss Cohen
    • 1
  • Leticia Cherchiglia
    • 2
  • Rachel Costa
    • 3
  1. 1.Department of Software EngineeringBraude College of EngineeringKarmielIsrael
  2. 2.Department of Media and Information, College of Communication Arts and SciencesMichigan State UniversityEast LansingUSA
  3. 3.Department of ArtsState University of Minas Gerais, UFMGBelo HorizonteBrazil

Personalised recommendations