Clustering Agents for the Evolution of Autonomous Musical Fitness

  • Róisín LoughranEmail author
  • Michael O’Neill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10198)


This paper presents a cyclical system that generates autonomous fitness functions or Agents for evolving short melodies. A grammar is employed to create a corpus of melodies, each of which is composed of a number of segments. A population of Agents are evolved to give numerical judgements on the melodies based on the spacing of these segments. The fitness of an individual Agent is calculated in relation to its clustering of the melodies and how much this clustering correlates with the clustering of the entire Agent population. A preparatory run is used to evolve Agents using 30 melodies of known ‘clustering’. The full run uses these Agents as the initial population in evolving a new best Agent on a separate corpus of melodies of random distance measures. This evolved Agent is then used in combination with the original melody grammar to create a new melody which replaces one of those from the initial random corpus. This results in a complex adaptive system creating new melodies without any human input after initialisation. This paper describes the behaviour of each phase in the system and presents a number of melodies created by the system.


Algorithmic composition Grammatical Evolution Clustering Self-adaptive system Autonomous fitness function 



This work is part of the App’Ed (Applications of Evolutionary Design) project funded by Science Foundation Ireland under grant 13/IA/1850. We would like to thank the anonymous reviewers for their suggestions on how to improve the paper.


  1. 1.
    Biles, J.A.: Straight-ahead jazz with GenJam: a quick demonstration. In: MUME 2013 Workshop (2013)Google Scholar
  2. 2.
    Boden, M.A.: The Creative Mind: Myths and Mechanisms. Psychology Press, New York (2004)Google Scholar
  3. 3.
    Boden, M.A.: Computer models of creativity. AI Mag. 30(3), 23 (2009)Google Scholar
  4. 4.
    Brabazon, A., O’Neill, M., McGarraghy, S.: Grammatical evolution. In: Brabazon, A., O’Neill, M., McGarraghy, S. (eds.) Natural Computing Algorithms, pp. 357–373. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Bringsjord, S., Bello, P., Ferrucci, D.: Creativity, the turing test, and the (better) lovelace test. In: Moor, J.H. (ed.) The Turing Test, pp. 215–239. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cook, M., Colton, S.: Generating code for expressing simple preferences: moving on from hardcoding and randomness. In: Proceedings of the Sixth International Conference on Computational Creativity June, p. 8 (2015)Google Scholar
  7. 7.
    Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances. In: Proceedings of Music AL Workshop. Citeseer (2007)Google Scholar
  8. 8.
    Eigenfeldt, A., Pasquier, P.: Populations of populations: composing with multiple evolutionary algorithms. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 72–83. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29142-5_7 CrossRefGoogle Scholar
  9. 9.
    Göksu, H., Pigg, P., Dixit, V.: Music composition using genetic algorithms (GA) and multilayer perceptrons (MLP). In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1242–1250. Springer, Heidelberg (2005). doi: 10.1007/11539902_158 CrossRefGoogle Scholar
  10. 10.
    Hickinbotham, S., Stepney, S.: Augmenting live coding with evolved patterns. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 31–46. Springer, Cham (2016). doi: 10.1007/978-3-319-31008-4_3 CrossRefGoogle Scholar
  11. 11.
    Jenks, G.F.: The data model concept in statistical mapping. In: International Yearbook of Cartography, vol. 7(1), pp. 186–190 (1967)Google Scholar
  12. 12.
    Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for novelty. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 837–844. ACM (2010)Google Scholar
  13. 13.
    Loughran, R., McDermott, J., O’Neill, M.: Grammatical evolution with zipf’s law based fitness for melodic composition. In: Sound and Music Computing Conference, Maynooth (2015)Google Scholar
  14. 14.
    Loughran, R., McDermott, J., O’Neill, M.: Tonality driven piano compositions with grammatical evolution. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2168–2175. IEEE (2015)Google Scholar
  15. 15.
    Loughran, R., McDermott, J., O’Neill, M.: Grammatical music composition with dissimilarity driven hill climbing. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 110–125. Springer, Cham (2016). doi: 10.1007/978-3-319-31008-4_8 CrossRefGoogle Scholar
  16. 16.
    Loughran, R., O’Neill, M.: Generative music evaluation: why do we limit to ‘human’?. In: Computer Simulation of Musical Creativity (CSMC), Huddersfield, UK (2016)Google Scholar
  17. 17.
    Miranda, E.R.: On the evolution of music in a society of self-taught digital creatures. Digit. Creativity 14(1), 29–42 (2003)CrossRefGoogle Scholar
  18. 18.
    Munoz, E., Cadenas, J., Ong, Y.S., Acampora, G.: Memetic music composition. IEEE Trans. Evol. Comput. 20(1), 1–15 (2016)CrossRefGoogle Scholar
  19. 19.
    Pearce, M., Wiggins, G.: Towards a framework for the evaluation of machine compositions. In: Proceedings of the AISB 2001 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, pp. 22–32. Citeseer (2001)Google Scholar
  20. 20.
    Scirea, M., Togelius, J., Eklund, P., Risi, S.: MetaCompose: a compositional evolutionary music composer. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) EvoMUSART 2016. LNCS, vol. 9596, pp. 202–217. Springer, Cham (2016). doi: 10.1007/978-3-319-31008-4_14 CrossRefGoogle Scholar
  21. 21.
    Shao, J., McDermott, J., O’Neill, M., Brabazon, A.: Jive: a generative, interactive, virtual, evolutionary music system. In: Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 341–350. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12242-2_35 CrossRefGoogle Scholar
  22. 22.
    Stanley, K.O., Lehman, J.: Why Greatness Cannot Be Planned: The Myth of the Objective. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Thywissen, K.: GeNotator: an environment for exploring the application of evolutionary techniques in computer-assisted composition. Organised Sound 4(02), 127–133 (1999)CrossRefGoogle Scholar
  24. 24.
    Todd, P.M., Werner, G.M.: Frankensteinian methods for evolutionary music. In: Griffith, N., Todd, P.M. (eds.) Musical Networks: Parallel Distributed Perception and Performace, p. 313. MIT Press, Cambridge (1999)Google Scholar
  25. 25.
    Waschka II, R.: Composing with genetic algorithms: GenDash. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 117–136. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Natural Computing Research and Applications GroupUniversity College DublinDublinIreland

Personalised recommendations