Skip to main content

Adipose Tissue-Derived Stem Cells in Regenerative Medicine and Plastic Surgery: Perspective from Personal Practice

  • Chapter
  • First Online:
Pancreas, Kidney and Skin Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Clinical observations of improvement of soft tissues after lipo-filling led to the hypothesis that adipose tissue is more than a filler. It is known that fat tissue has a complex cellular composition being a rich source of mesenchymal multipotent stem cells. These qualities make fat an important tool both in tissue regeneration and in regenerative plastic surgery (RPS). RPS in our practice is oriented toward reconstruction, correction, and rejuvenation of soft tissues of different anatomic areas, neck, hands, limbs, and abdomen, affected by congenital, oncological, posttraumatic, or aging conditions. Our focus is a closed surgery that has visible regenerative outcomes explained by the synergic action of three main agents combined in a single surgical session, under general anesthesia: autologous microfat graft, fractional CO2 laser (superficial ablative resurfacing), and PRP. Additional optimizing factors can be used as ADSC enrichment of fat and laser-assisted lipolysis. The equipment that we use is based on microcannulas and lasers (fractional CO2 and diode). The result consists in regeneration of normal, pathological skin, underlying soft tissues and improved safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This work was funded by the Romanian Academy. Alina Constantin acknowledges the financial support of the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013 (ID: POSDRU/159/1.5/S/133391).

Abbreviations

ADSCs:

Adipose-derived stem cells

AFT:

Autologous fat transfer

BM:

Bone marrow

BMSCs:

Bone marrow stem cells

EM:

Electromagnetic

HLLT:

High-level laser treatment

HSCs:

Hematopoietic stem cells

LAL:

Laser-assisted lipolysis

LLLT:

Low-level laser treatment

MSCs:

Mesenchymal stem cells

PRP:

Platelet-rich plasma

PS:

Plastic surgery

RM:

Regenerative medicine

RPS:

Regenerative plastic surgery

SCNs:

Stem cells niches

SVF:

Stromal vascular fraction

TM:

Translational medicine

References

  • Cervelli V, Gentile P, Scioli MG, Grimaldi M, Casciani CU, Spagnioli LG, Orlandi A (2009) Application of platelet-rich plasma in plastic surgery: clinic and in vitro evaluation. Tissue Eng Plast C Methods 15(4):625–634

    Article  CAS  Google Scholar 

  • Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    CAS  PubMed  Google Scholar 

  • Coleman SR, Mazzola RF (2009) Fat injection from filling to regeneration. Quality Medical Publishing. ISBN 978-1-57626-284-9 (hardcover) 5–11

    Google Scholar 

  • Constantin A, Dumitrescu M, Nemecz MA, Tanko G, Popov D, Jianu D, Simionescu M (2015) Redox homeostasis regulation after in vitro exposure of human adipose stromal cells to low-level CO2 LASER. 33rd Annual Scientific Session of the Romanian Society for Cell Biology, Book of Abstracts, p 102

    Google Scholar 

  • Constantin A, Dumitrescu M, Mihai Corotchi MC, Jianu D, Simionescu M (2017) CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules. Lasers Med Sci. doi:10.1007/s10103-016-2093-6

    PubMed  Google Scholar 

  • Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1(3):179–184

    Article  CAS  PubMed  Google Scholar 

  • Dinescu S, Galateanu B, Radu E, Hermenean A, Lungu A, Stancu IC, Jianu D, Tumbar T, Costache M (2015) Research Article “A 3D porous gelatin-alginate-based-IPN acts as an efficient promoter of chondrogenesis from human adipose-derived stem cells”. Hindawi Publishing Corporation, Stem Cells International, Article ID 252909

    Google Scholar 

  • Eppley BL, Woodell JE, Higgins J (2004) Platelet quantification and growth factor analysis from platelet-rich plasma, implication for wound healing. Plast Reconstr Surg 1114(6):1502–1508

    Article  Google Scholar 

  • Ghanem AM (2011) Stem cell theory. Body Lang 43:53–54

    Google Scholar 

  • Jianu DM, Filipescu M, Jianu SA, Nita AC, Chirita DA (2012) The synergy between LASERS and adipose surgery in face and neck rejuvenation: a new approach from personal experience. Laser Theraphy J 21(3.) ISSN 08985901:215–222

    Article  CAS  Google Scholar 

  • Jianu DM, Jianu S, Filipescu M, Cobani O. Regenerative surgery of periocular area, p.249–254, Stem cells derived from fat tissue – personal experience in research and therapeutic applications, p. 301–306. Dermatology at the interface with other specialties” coord by Daciana Elena Branisteanu Edit. “Gr.T.Popa and Pharmacy Iasi 2014, ISBN 978–606–544-221-4

    Google Scholar 

  • Kauvar ANB, Warycha MA (2011) Wrinkles and acne scars: fractional ablative lasers. In: Raulin C, Karsai S (eds) Laser and IPL technology in dermatology and aesthetic medicine. Springer, Berlin, pp 307–318

    Chapter  Google Scholar 

  • Kokai LE, Rubin JP, Marra KG (2005) The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 116(5):1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Marincola FM (2003) J Transl Med 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Marx E (2004) Platelete-rich plasma, evidence to support its use. J Oral Maxillofac Surg 62(4):489–496

    Article  PubMed  Google Scholar 

  • Ohshiro T (1991) Lower reactive level LASER therapy, practical applications. Wiley, pp 6–76

    Google Scholar 

  • Ohshiro T (2011) New classification for single-system light treatment. Laser Ther 20(1):11–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Orbay H, Tobita M, Mizuno H (2012) Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int 2012:461718

    Article  PubMed  PubMed Central  Google Scholar 

  • Oshiro T, Popa M, Niculae B, Savu B (2000) Laser therapy and laser surgery in dermatology, printed at SC National IMPRIM SA

    Google Scholar 

  • Pa Z, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng 7(2):211–228

    Article  Google Scholar 

  • Rigotti G et al (2009) Adipose – derived mesenchymal stem cells: past, present and future. Aesthet Plast Surg 33(3):271

    Article  Google Scholar 

  • Rubio DMG, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, Platt LD, Baez A, Esposito K (2010) Defining translational research: implications for training. Acad Med 85(3):470–475. doi:10.1097/ACM.0b013e3181ccd618

    Article  PubMed  PubMed Central  Google Scholar 

  • Scadden (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Song Y-H, Prant L, Alt E (2011) Differentiation and plasticity of stem cells for tissue engineering. Tissue Engineering. Springer, Berlin/Heidelberg, pp 1–18

    Google Scholar 

  • Tholpady SS, Aojanepong C, Llull R, Jeong J-H, Mason AC, Futrell JW, Ogle RC, Katz AJ (2005) The cellular plasticity of human adipocytes. Ann Plast Surg 54(6):651–656. Original Article

    Article  CAS  PubMed  Google Scholar 

  • Van Pham P, Bui KH-T, Ngo DQ, Vu NB, Truong NH, Phan NL-C, Le DM, Duong TD, Nguyen TD, Le VT, Phan NK (2013) Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther 4(4):91. doi:10.1186/scrt277

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimura K, Sato A, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K (2008) tCell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg 34(9):1178–1185

    CAS  PubMed  Google Scholar 

  • Yoshimura K, Eto H, Kato H, Doi K, Aoi N (2011) In vivo manipulation of stem cells for adipose tissue repair/reconstruction. Regen Med 6(6 Suppl):33–41. doi:10.2217/rme.11.62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Jianu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jianu, D., Cobani, O., Jianu, S. (2017). Adipose Tissue-Derived Stem Cells in Regenerative Medicine and Plastic Surgery: Perspective from Personal Practice. In: Pham, P. (eds) Pancreas, Kidney and Skin Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55687-1_12

Download citation

Publish with us

Policies and ethics