Dynamics of Formation and Fine Structure of Flow Pattern Around Obstacles in Laboratory and Computational Experiment

  • Yu. D. Chashechkin
  • Ya. V. Zagumennyi
  • N. F. Dimitrieva
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 687)


Non-stationary dynamics and structure of stratified and homogeneous fluid flows around a plate and a wedge were studied on basis of the fundamental equations set using methods of laboratory and numerical modeling. Fields of various physical variables and their gradients were visualized in a wide range of the problem parameters. Eigen temporal and spatial scales of large (vortices, internal waves, wake) and fine flow components were defined. The same system of equations and numerical algorithm were used for the whole range of the parameters under consideration. The computation results are in a good agreement with the data of laboratory experiments.


Fundamental system Laboratory experiment High-resolution computations Flow around obstacles 



The work was partially supported by Russian Foundation for Basic Research (grant 15-01-09235). The calculations were performed using the service UniHUB ( and Research Computing Centre “Lomonosov” (


  1. 1.
    D’Alembert, J.-R.: Traitè de l’èquilibre et de movement des fluids. Paris, David. 458 p. (1744)Google Scholar
  2. 2.
    D’Alembert J.-R.: Réflexions sur la cause générale des vents. Paris (1747)Google Scholar
  3. 3.
    Euler, L., Robins, B.: Neue Grundsätze der Artillerie enthaltend die Bestimmung der Gewalt des Pulvers nebst einer Untersuchung über den Unterscheid des Wiederstands der Luft in schnellen und langsamen Bewegungen. Aus d. Engl. übers. u. mit Anm. v. L. Euler. Berlin, Haude, 720 S. (1745)Google Scholar
  4. 4.
    Euler, L.: Principes généraux du mouvement des fluids. Mémoires de l’Academié royalle des sciences et belles letters. Berlin. vol. 11 (papers of 1755 year). (1757)Google Scholar
  5. 5.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics: Course of Theoretical Physics, vol. 6, p. 731. Pergamon Press, Oxford (1987)Google Scholar
  6. 6.
    Baidulov, V.G., Chashechkin, Y.: Invariant properties of systems of equations of the mechanics of inhomogeneous fluids. J. Appl. Math. Mech. 75(4), 390–397 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chashechkin, Y.D.: Differential fluid mechanics – harmonization of analytical, numerical and laboratory models of flows. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds.) Mathematical Modeling and Optimization of Complex Structures. CMAS, vol. 40, pp. 61–91. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-23564-6_5 CrossRefGoogle Scholar
  8. 8.
    Zagumennyi, Y.V., Chashechkin, Y.D.: Pattern of unsteady vortex flow around plate under a zero angle of attack. Fluid Dyn. 51(3), 53–70 (2016). doi: 10.7868/S056852811603018X CrossRefGoogle Scholar
  9. 9.
    Schlichting, H.: Boundary-Layer Theory, p. 535. McGraw-Hill, New York (1955)zbMATHGoogle Scholar
  10. 10.
    Bardakov, R.N., Mitkin, V.V., Chashechkin, Y.: Fine structure of a stratified flow near a flat-plate surface. J. Appl. Mech. Technol. Phys. 48(6), 840–851 (2007). doi: 10.1007/s10808-007-0108-6 CrossRefzbMATHGoogle Scholar
  11. 11.
    Chashechkin, Y.D.: Structure and dynamics of flows in the environment: theoretical and laboratory modeling. In: Actual Problems of Mechanics. 50 years of the A.Y. Ishlinskiy Institute for Problems in Mechanics of the RAS, pp. 63–78. (2015) (in Russian)Google Scholar
  12. 12.
    Dimitrieva, N.F., Zagumennyi, Y.V.: Numerical simulation of stratified flows using OpenFOAM package. In: Proceedings of the Institute for System Programming RAS, vol. 26, no. 5, pp. 187–200 (2014). doi: 10.15514/ISPRAS-2014-26(5)-10
  13. 13.
    Zagumennyi, I.V., Chashechkin, Y.D.: Diffusion-induced flow on a strip: theoretical, numerical and laboratory modeling. Procedia IUTAM. 8, 256–266 (2013). doi: 10.1016/j.piutam.2013.04.032 Google Scholar
  14. 14.
    Prandtl, L.: Führer durch die Strömungslehre. Braunschweig: Vieweg. 638 p. (1942)Google Scholar
  15. 15.
    Dimitrieva, N.F., Chashechkin, Y.: Numerical simulation of the dynamics and structure of a diffusion-driven flow on a wedge. Comput. Contin. Mech. 8(1), 102–110 (2015). doi: 10.7242/1999-6691/2015.8.1.9 CrossRefGoogle Scholar
  16. 16.
    Zagumennyi, Ia.V., Dimitrieva, N.F.: Diffusion-induced flow on a wedge-shaped obstacle. Phys. Scr. 91, Article No.084002 (2016). doi: 10.1088/0031-8949/91/8/084002
  17. 17.
    Chashechkin, Y.D., Zagumennyi, I.V.: Hydrodynamics of horizontal stripe. Probl. Evol. Open Syst. 2(18), 25–50 (2015). (The Republic of Kazakhstan)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Yu. D. Chashechkin
    • 1
  • Ya. V. Zagumennyi
    • 2
  • N. F. Dimitrieva
    • 2
  1. 1.A.Yu. Ishlinskiy Institute for Problems in Mechanics of the RASMoscowRussia
  2. 2.Institute of Hydromechanics of NAS of UkraineKievUkraine

Personalised recommendations