Advertisement

Developing an Event-Tree Probabilistic Tsunami Inundation Model for NE Atlantic Coasts: Application to a Case Study

  • R. Omira
  • L. Matias
  • M. A. Baptista
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

This study constitutes a preliminary assessment of probabilistic tsunami inundation in the NE Atlantic region. We developed an event-tree approach to calculate the likelihood of tsunami flood occurrence and exceedance of a specific near-shore wave height for a given exposure time. Only tsunamis of tectonic origin are considered here, taking into account local, regional, and far-field sources. The approach used here consists of an event-tree method that gathers probability models for seismic sources, tsunami numerical modeling, and statistical methods. It also includes a treatment of aleatoric uncertainties related to source location and tidal stage. Epistemic uncertainties are not addressed in this study. The methodology is applied to the coastal test-site of Sines located in the NE Atlantic coast of Portugal. We derive probabilistic high-resolution maximum wave amplitudes and flood distributions for the study test-site considering 100- and 500-year exposure times. We find that the probability that maximum wave amplitude exceeds 1 m somewhere along the Sines coasts reaches about 60 % for an exposure time of 100 years and is up to 97 % for an exposure time of 500 years. The probability of inundation occurrence (flow depth >0 m) varies between 10 % and 57 %, and from 20 % up to 95 % for 100- and 500-year exposure times, respectively. No validation has been performed here with historical tsunamis. This paper illustrates a methodology through a case study, which is not an operational assessment.

Keywords

Tsunami Probabilistic approach Event-tree Inundation NE Atlantic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L. M., LeVeque, R. J., & González, F. I. (2015). The pattern method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 76, 19–39.CrossRefGoogle Scholar
  2. Andrade, C., Andrade, A. M., Kortekaas, S., & Dawson, A. (1997), Sedimentological traces of tsunamigenic overwash of the Martinhal lowland (Western Algarve, Portugal). In Proceedings Seminário da ZonaCosteira do Algarve, Faro, 10–12, Eurocast-Portugal, 11–18.Google Scholar
  3. Andrade, C., Borges, P., & Freitas, M. C. (2006). Historical tsunami in the Azores archipelago (Portugal). Journal of Volcanology and Geothermal Research, 156(1), 172–185.CrossRefGoogle Scholar
  4. Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure and Applied Geophysics, 164, 577–592.CrossRefGoogle Scholar
  5. Baptista, M. A., Heitor, S., Miranda, J. M., Miranda, P., & Mendes Victor, L. (1998). The 1755 Lisbon tsunami; evaluation of the tsunami parameters. Journal of Geodynamics, 25, 143–157.CrossRefGoogle Scholar
  6. Baptista, M. A., & Miranda, J. M. (2009). Revision of the Portuguese catalog of tsunamis. Natural Hazards and Earth Systems Sciences, 9, 25–42.CrossRefGoogle Scholar
  7. Baptista, M. A., Miranda, J. M., Chierici, F., & Zitellini, N. (2003). New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling. Natural Hazards and Earth Systems Sciences, 3(5), 333–340.CrossRefGoogle Scholar
  8. Baptista, M. A., Miranda, J. M., Omira, R., & Antunes, C. (2011). Potential inundation of Lisbon downtown by a 1755-like tsunami. Natural Hazards and Earth Systems Sciences, 11, 3319–3326.CrossRefGoogle Scholar
  9. Burbidge, D., Cummins, P. R., Mleczko, R., & Thio, H. K. (2008). A probabilistic tsunami hazard assessment for Western Australia. Pure and Applied Geophysics, 165(11–12), 2059–2088.CrossRefGoogle Scholar
  10. Coppersmith, K. J., & Youngs, R. R. (1986). Capturing uncertainty in probabilistic seismic hazard assessments within intraplate tectonic environments. In Proceedings of the Third U.S. National Conference on Earthquake Engineering, Charleston, South Carolina, pp. 301–312.Google Scholar
  11. Costa, P. J., Andrade, C., Freitas, M. C., Oliveira, M. A., Silva, C. M., Omira, R., et al. (2011). Boulder deposition during major tsunami events. Earth Surface Processes and Landforms, 36(15), 2054–2068.CrossRefGoogle Scholar
  12. Dao, M. H., & Tkalich, P. (2007). Tsunami propagation modeling—a sensitivity study. Natural Hazards and Earth Systems Sciences, 7, 741–754.CrossRefGoogle Scholar
  13. Fernandes, R. M. S., Ambrosius, B. A. C., Noomen, R., Bastos, L., Wortel, M. J. R., Spakman, W., et al. (2003). The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophysical Research Letters, 30(16), 1828.CrossRefGoogle Scholar
  14. Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. Pure and Applied Geophysics, 154, 485–512.CrossRefGoogle Scholar
  15. Geist, E. L., & Lynett, P. J. (2014). Source processes for the probabilistic assessment of tsunami hazards. Oceanography, 27(2), 86–93.CrossRefGoogle Scholar
  16. Geist, E. L., & Parsons, T. (2006). Probabilistic Analysis of Tsunami Hazards. Natural Hazards, 37(3), 277–314.CrossRefGoogle Scholar
  17. González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research (Oceans), 114(C11), 1978–2012.Google Scholar
  18. González, F. I., Randall, J. L., & Loyce, M. A. (2013). Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA. Final Report for Phase I. University of Washington Department of Applied Mathmatics. http://faculty.washington.edu/rjl/pubs/CCptha/CCpthaFinalReport.pdf. Accessed 01 Feb 2016.
  19. Gutscher, M. A., Malod, J., Rehault, J. P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., et al. (2002). Evidence for active subduction beneath Gibraltar. Geology, 30(12), 1071–1074.CrossRefGoogle Scholar
  20. Harbitz, C. B., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H., et al. (2012). Tsunami hazard in the Caribbean: Regional exposure derived from credible worst case scenarios. Continental Shelf Research, 38, 1–23.CrossRefGoogle Scholar
  21. Instituto Hidrográfico de Portugal (2010). Aproximações a Sines. Plano de Porto de Sines no. 26408 (3rd ed.) Marinha, Instituto Hidrográfico. Lisbon.Google Scholar
  22. Instituto Hidrográfico de Portugal (2012). Bathymetric model of Sines. Modelo Batimetrico de Sines. http://www.hidrografico.pt/download-gratuito.php. Accessed 01 Feb 2016.
  23. Johnston, A. (1996). Seismic moment assessment of earthquakes in stable continental regions III. New Madrid, 1811–1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International, 126, 314–344.CrossRefGoogle Scholar
  24. Kaabouben, F., Baptista, M. A., Brahim, A. I., El Mouraouah, A., & Toto, A. (2009). On the moroccan tsunami catalogue. Natural Hazards and Earth Systems Sciences, 9, 1227–1236.CrossRefGoogle Scholar
  25. Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161, 1655–1681CrossRefGoogle Scholar
  26. Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II, incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82, 120–134.Google Scholar
  27. Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.CrossRefGoogle Scholar
  28. Liu, P. L. F., Woo, S. B., & Cho, Y. S., (1998). Computer programs for tsunami propagation and inundation. Technical report, Cornell University.Google Scholar
  29. Lo Iacono, C., Gràcia, E., Zaniboni, F., Pagnoni, G., Tinti, S., Bartolomé, R., et al. (2012). Large, deep water slope failures: implications for landslide-generated tsunamis. Geology, 40(10), 931–934.CrossRefGoogle Scholar
  30. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophysical Journal International, 200(1), 574–588.CrossRefGoogle Scholar
  31. Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A., & Valensise, G. (2008). Earthquake generated tsunamis in the Mediterranean Sea: scenarios of potential threats to southern Italy. Journal of Geophysical Research (Solid Earth), 113(B1), 1978–2012.Google Scholar
  32. Luis, J. F. (2007). Mirone: a multi-purpose tool for exploring grid data. Computers & Geosciences, 33(1), 31–41.CrossRefGoogle Scholar
  33. Luque, L., Lario, J., Civic, J., Silva, P. G., Zazo, C., Goy, J. L., et al. (2002). Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. Journal of Quaternary Science, 17(5–6), 623–631.CrossRefGoogle Scholar
  34. Luque, L., Lario, J., Zazo, C., Goy, J. L., Dabrio, C. J., & Silva, P. G. (2001). Tsunami deposits as paleoseismic indicators: examples from the Spanish coast. Acta Geologica Hispanica, 36(3–4), 197–211.Google Scholar
  35. Maramai, A., Brizuela, B., & Graziani, L. (2014). The Euro-Mediterranean Tsunami Catalogue. Annals of Geophysics, 57(4), S0435.Google Scholar
  36. Matias, L. M., Cunha, T., Annunziato, A., Baptista, M. A., & Carrilho, F. (2013). Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Natural Hazards and Earth Systems Sciences, 13(1), 1–13.CrossRefGoogle Scholar
  37. Matias, L. M., Ribeiro, A., Baptista, M. A., Zitellini, N., Cabral, J., Terrinha, P., et al. (2005). Comment on: Lisbon 1755: A case of triggered onshore rupture? By Vilanova S P, Nunes C F and Fonseca J F B D. Bulletin of the Seismological Society of America, 95(6), 2534–2538.CrossRefGoogle Scholar
  38. Mercado, A., & McCann, W. (1998). Numerical Simulation of the 1918 Puerto Rico Tsunami. Natural Hazards, 18, 57–76.CrossRefGoogle Scholar
  39. Miranda, J. M., Luis, J., Reis, C., Omira R., & Baptista, M. A. (2014). Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up. American Geophysical Union (AGU) Fall Meeting, San Francisco. Paper Number: S21A-4390. Session Number and Title: S21A, Natural Hazards.Google Scholar
  40. Moreira, V. S. (1968). Tsunamis Observados em Portugal. PUB GEO134. Lisboa Portugal: Serviço Meteorológico Nacional, p. 25 (in Portuguese).Google Scholar
  41. Myers, E. P., & Baptista, A. M. (2001). Analysis of factors influencing simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska Tsunamis. Natural Hazards, 23, 1–28.CrossRefGoogle Scholar
  42. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  43. Omira, R., Baptista, M. A., Leone, F., Matias, L., Mellas, S., Zourarah, B., et al. (2013). Performance of coastal sea-defense infrastructure at El Jadida (Morocco) against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunami. Natural Hazards and Earth Systems Sciences, 13, 1779–1794.CrossRefGoogle Scholar
  44. Omira, R., Baptista, M. A., & Matias, L. (2015). Probabilistic Tsunami Hazard in the Northeast Atlantic from Near- and Far-Field Tectonic Sources. Pure and Applied Geophysics, 172(3), 901–920.CrossRefGoogle Scholar
  45. Omira, R., Baptista, M. A., Matias, L., Miranda, J. M., Catita, C., Carrilho, F., et al. (2009). Design of a sea-level tsunami detection network for the Gulf of Cadiz. Natural Hazards and Earth Systems Sciences, 9(4), 1327–1338.CrossRefGoogle Scholar
  46. Omira, R., Baptista, M. A., & Miranda, J. M. (2011). Evaluating tsunami impact on the Gulf of Cadiz coast (northeast Atlantic). Pure and Applied Geophysics, 168(6–7), 1033–1043.CrossRefGoogle Scholar
  47. Omira, R., Baptista, M. A., Miranda, J. M., Toto, E., Catita, C., & Catalao, J. (2010). Tsunami vulnerability assessment of Casablanca-Morocco using numerical modeling and GIS tools. Natural Hazards, 54(1), 75–95.CrossRefGoogle Scholar
  48. Omira, R., Ramalho, I., Terrinha, P., Baptista, M. A., Batista, L., & Zitellini, N. (2016). Deep-water seamounts, a potential source of tsunami generated by landslides? The Hirondelle Seamount, NE Atlantic. Marine Geology, 379, 267–280.CrossRefGoogle Scholar
  49. Power, W., Downes, G., & Stirling, M. (2007). Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure and Applied Geophysics, 164, 547–564.CrossRefGoogle Scholar
  50. Renou, C., Lesne, O., Mangin, A., Rouffi, F., Atillah, A., El Hadani, D., et al. (2011). Tsunami hazard assessment in the coastal area of Rabat and Salé, Morocco. Natural Hazards Earth Systems Sciences, 11, 2181–2191.CrossRefGoogle Scholar
  51. Saito, T., & Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877–888.CrossRefGoogle Scholar
  52. Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., & Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research (Solid Earth), 117(B1), 1978–2012.Google Scholar
  53. Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23(8), 861–864.CrossRefGoogle Scholar
  54. Tinti, S., & Armigliato, A. (2003). The use of scenarios to evaluate the tsunami impact in southern Italy. Marine Geology, 199(3), 221–243.CrossRefGoogle Scholar
  55. Tinti, S., Armigliato, A., Pagnoni, G., & Zaniboni, F. (2005). Scenarios of giant tsunamis of tectonic origin in the Mediterranean. ISET Journal of Earthquake Technology, 42, 171–188.Google Scholar
  56. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society America, 84(4), 974–1002.Google Scholar
  57. Wronna, M., Omira, R., & Baptista, M. A. (2015). Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal. Natural Hazards Earth System Sciences, 15, 2557–2568.CrossRefGoogle Scholar
  58. Zitellini, N., Chierici, F., Sartori, R., & Torelli, L. (1999). The tectonic source of the 1755 Lisbon Earthquake. Annali di Geofisica, 42(1), 49–55.Google Scholar
  59. Zitellini, N., Gracia, E., Matias, L., Terrinha, P., Abreu, M. A., DeAlteriis, G., et al. (2009). The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters, 280(1), 13–50.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Instituto Português do Mar e da Atmosfera, IPMALisbonPortugal
  2. 2.Instituto Dom Luiz, IDLUniversity of LisbonLisbonPortugal
  3. 3.Instituto Superior de Engenharia de Lisboa, ISEL, Instituto Politécnico de LisboaLisbonPortugal

Personalised recommendations