Advertisement

A Comparative Analysis of Coastal and Open-Ocean Records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico

  • Oleg Zaytsev
  • Alexander B. Rabinovich
  • Richard E. Thomson
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

The three great earthquakes off the coast of Chile on 27 February 2010 (Maule, Mw 8.8), 1 April 2014 (Iquique, Mw 8.2) and 16 September 2015 (Illapel, Mw 8.3) generated major transoceanic tsunamis that spread throughout the Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the events recorded on the Pacific coast of Mexico enabled us to estimate parameters of the waves along the coast and to compare statistical features of the events. We also identified three coastal “hot spots” (sites having maximum tsunami risk): Puerto Angel, Puerto Madero and Manzanillo. Based on the joint spectral analyses of the tsunamis and background noise, we have developed a method for using coastal observations to determine the underlying spectrum of tsunami waves in the deep ocean. The “reconstructed” open-ocean tsunami spectra are in close agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.

Keywords

Chilean earthquakes and tsunamis Mexican coast tide gauge records DART open-ocean tsunamis tsunami travel time spectral analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, C., Sepúlveda, I., & Liu, P. L.-F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Reseach Letters, 41, 3988–3994. doi: 10.1002/2014GL060567.CrossRefGoogle Scholar
  2. Aránguiz, R., González, G., González, J., Catalán, P. A., Cienfuegos, R., Yagi, Y., et al. (2016). The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics, 173, 333–348. doi: 10.1007/s00024-015-1225-4.CrossRefGoogle Scholar
  3. Borrero, J. C., & Greer, S. D. (2013). Comparison of the 2010 Chile and 2011 Japan tsunamis in the far field. Pure and Applied Geophysics, 170(6–8), 1249–1274. doi: 10.1007/s00024-012-0559-4.CrossRefGoogle Scholar
  4. Calisto, I., Ortega, M., & Miller, M. (2015). Observed and modelled tsunami signals compared by using different rupture models of the April 1, 2014, Iquique earthquake. Natural Hazards, 79, 397–408. doi: 10.1007/s11069-015-1848-x.CrossRefGoogle Scholar
  5. Calisto, I., Miller, M., & Constanzo, I. (2016). Comparison between tsunami signals generated by different source models and the observed data of the Illapel 2015 earthquake. Pure and Applied Geophysics, 173(4), 1051–1061. doi: 10.1007/s00024-016-1253-8.CrossRefGoogle Scholar
  6. Candella, R. N., Rabinovich, A. B., & Thomson, R. E. (2008). The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America. Advances in Geosciences, 14(1), 117–128.CrossRefGoogle Scholar
  7. Catalán, P. A., Aránguiz, R., González, G., et al. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters,. doi: 10.1002/2015GL063333.CrossRefGoogle Scholar
  8. Contreras-López, M., Winckler, P., Sepúlveda, I., Andaur-Álvarez, A., Cortés-Molina, F., Guerrero, C. J., et al. (2016). Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure and Applied Geophysics, 173(2), 349–367. doi: 10.1007/s00024-015-1235-2.CrossRefGoogle Scholar
  9. Delouis, B., Nocquet, J.M., & Vallée M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37, L17305. doi: 10.1029/2009GL043899.
  10. Eblé, M. C., Mungov, G., & Rabinovich, A. B. (2015). On the leading negative phase of major 2010–2014 tsunamis. Pure and Applied Geophysics, 172(12), 3493–3508. doi: 10.1007/s00024-01.CrossRefGoogle Scholar
  11. Farreras, S. F., & Sanchez, A. J. (1991). The tsunami threat on the Mexican west coast: A historical analysis and recommendations for hazard mitigation. Natural Hazards, 4, 301–316.CrossRefGoogle Scholar
  12. Farreras, S. F., Ortiz, M., & González, J. I. (2007). Steps towards the implementation of a tsunami detection, warning, mitigation and preparedness program for south western coastal areas of Mexico. Pure and Applied Geophysics, 164, 605–616. doi: 10.1007/s00024-006-0175-2.CrossRefGoogle Scholar
  13. Filloux, J. H., Luther, D. S., & Chave, A. D. (1991). Update on seafloor pressure and electric field observations from the north-central and northeastern Pacific: Tides, infratidal fluctuations, and barotropic flow. In B. B. Parker (Ed.), Tidal hydrodynamics (pp. 617–639). New York: J. Wiley.Google Scholar
  14. Fine, I. V., & Thomson, R. E. (2013). A wavefront orientation method for precise numerical determination of tsunami travel time. Natural Hazards and Earth Systems Sciences, 13, 2863–2870. doi: 10.5194/nhess-13-2863-2013.CrossRefGoogle Scholar
  15. Fine, I. V., Cherniawsky, J. Y., Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2015). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172(3–4), 699–718. doi: 10.1007/s00024-014-1012-7.CrossRefGoogle Scholar
  16. Fritz, H. M., Petroff, C. M., Catalán, P. A., et al. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11/12), 1989–2010. doi: 10.1007/s00024-011-0283-5.CrossRefGoogle Scholar
  17. Fuentes, M., Riquelme, S., Hayes, G., Medina, M., Melgar, D., Vargas, G., et al. (2016). A study of the 2015 Mw 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches. Pure and Applied Geophysics, 173, 1847–1858. doi: 10.1007/s00024-016-1305-0.CrossRefGoogle Scholar
  18. Fujii, Y., & Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure and Applied Geophysics, 170(9–10), 1493–1509. doi: 10.1007/s00024-012-0524-2.CrossRefGoogle Scholar
  19. Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., et al. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053–1060. doi: 10.1002/2014GL062604.CrossRefGoogle Scholar
  20. Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., & Watada, S. (2015). Deep-water characteristics of the trans-Pacific tsunami from the 1 April 2014 Mw 8.2, Iquique, Chile earthquake. Pure and Applied Geophysics, 172(3–4), 719–730. doi: 10.1007/s00024-014-0983-8.CrossRefGoogle Scholar
  21. Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., & Gusman, A. R. (2016). Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters,. doi: 10.1002/2015GL067297.CrossRefGoogle Scholar
  22. Honda, K., Terada, T., Yoshida, Y., & Isitani, D. (1908). An investigation on the secondary undulations of oceanic tides (p. 108). J. College Sci., Imper. Univ. Tokyo.Google Scholar
  23. Igarashi, Y. L., Kong, L., Yamamoto, M., & McCreery, C. S. (2011). Anatomy of historical tsunamis: Lessons learned for tsunami warning. Pure and Applied Geophysics, 168(11/12), 2043–2063. doi: 10.1007/s00024-011-0287-1.CrossRefGoogle Scholar
  24. Kulikov, E. A., Rabinovich, A. B., Spirin, A. I., Poole, S. L., & Soloviev, S. L. (1983). Measurement of tsunamis in the open ocean. Marine Geodesy, 6(3–4), 311–329.CrossRefGoogle Scholar
  25. Kulikov, E. A., Rabinovich, A. B., & Thomson, R. E. (2005). Estimation of tsunami risk for the coasts of Peru and Northern Chile. Natural Hazards, 35(2), 185–209.CrossRefGoogle Scholar
  26. Lay, T., Yue, H., Brodsky, E. E., & An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophysical Research Letters, 41, 3818–3825. doi: 10.1002/2014GL060238.CrossRefGoogle Scholar
  27. Li, B., & Ghosh, A. (2016). Imaging rupture process of the 2015 Mw 8.3 Illapel earthquake using the US seismic array. Pure and Applied Geophysics, 173(7), 2245–2255. doi: 10.1007/s00024-016-1323-y.CrossRefGoogle Scholar
  28. Miller, G. R. (1972). Relative spectra of tsunamis (p. 7). Hawaii Inst. Geophys, HIG-72-8.Google Scholar
  29. Miller, G. R., Munk, W. H., & Snodgrass, F. E. (1962). Long-period waves over California’s borderland. Part II, Tsunamis. Journal of Marine Research, 20(1), 31–41.Google Scholar
  30. Mofjeld, H. O. (2009). Tsunami measurements. In A. Robinson & E. Bernard (Eds.), The Sea, vol. 15, Tsunamis (pp. 201–235). Cambridge, USA: Harvard University Press.Google Scholar
  31. Mungov, G., Eblé, M., & Bouchard, R. (2013). DART® tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of tsunami research and operations. Pure and Applied Geophysics, 170, 1369–1384. doi: 10.1007/s00024-012-0477-5.CrossRefGoogle Scholar
  32. Omira, R., Baptista, M. A., & Lisboa, F. (2016). Tsunami characteristics along the Peru-Chile trench: analysis of the 2015 Mw 8.3 Illapel, the 2014 Mw 8.2 Iquique and the 2010 Mw 8.8 Maule tsunamis in the near-field. Pure and Applied Geophysics, 173(4), 1063–1077. doi: 10.1007/s00024-016-1277-0.CrossRefGoogle Scholar
  33. Ortiz, M., Singh, S. K., Pacheco, J., & Kostoglodov, V. (1998). Rupture length of the October 9, 1995 Colima-Jalisco earthquake (Mw 8) estimated from tsunami data. Geophysical Research Letters, 25, 2857–2860.CrossRefGoogle Scholar
  34. Ortiz, M., Kostoglodov, V., Singh, S. K., & Pacheco, J. (2000). New constraints on the uplift of October 9, 1995 Jalisco-Colima earthquake (Mw 8) based on the analysis of tsunami records at Manzanillo and Navidad, Mexico. Geofísica International, 39, 349–357.Google Scholar
  35. Pararas-Carayannis, G. (2010). The earthquake and tsunami of 27 February 2010 in Chile—evaluation of source mechanism and of near and far-field tsunami effects. Science of Tsunami Hazards, 29(2), 96–126.Google Scholar
  36. Parker, B. B. (2007). Tidal analysis and prediction, NOAA Spec. Publ. NOS CO-OPS 3 (p. 378). Maryland: Silver Spring.Google Scholar
  37. Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal Geophysical Research, 102(C6), 12663–12676.CrossRefGoogle Scholar
  38. Rabinovich, A. B., & Eblé, M. C. (2015). Deep ocean measurements of tsunami waves. Pure and Applied Geophysics, 172(12), 3281–3312. doi: 10.1007/s00024-015-1058-1.CrossRefGoogle Scholar
  39. Rabinovich, A. B., Thomson, R. E., & Stephenson, F. E. (2006). The Sumatra Tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic Oceans. Surveys in Geophysics, 27, 647–677.CrossRefGoogle Scholar
  40. Rabinovich, A. B., Candella, R., & Thomson, R. E. (2011). Energy decay of the 2004 Sumatra tsunami in the World Ocean. Pure and Applied Geophysics, 168(11), 1919–1950. doi: 10.1007/s00024-01-0279-1.CrossRefGoogle Scholar
  41. Rabinovich, A. B., Candella, R. N., & Thomson, R. E. (2013a). The open ocean energy decay of three recent trans-Pacific tsunamis. Geophysical Research Letters,. doi: 10.1002/grl.50625.CrossRefGoogle Scholar
  42. Rabinovich, A. B., Thomson, R. E., & Fine, I. V. (2013b). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States. Pure and Applied Geophysics, 170(9–10), 1529–1565. doi: 10.1007/s00024-012-0541-1.CrossRefGoogle Scholar
  43. Sanchez, A. J., & Farreras, S. F. (1983). Maximum entropy spectral analysis of tsunamis along the Mexican coast, 1957–1979. In K. Iida & T. Iwasaki (Eds.), Tsunamis: Their science and engineering (pp. 147–159). Tokyo: Terra Sci.Google Scholar
  44. Sanchez, A. J., & Farreras, S. F. (1993). Catalog of Tsunamis on the Western Coast of Mexico (p. 79). Boulder, CO: National Geophysical Data Center.Google Scholar
  45. Šepić, J., & Rabinovich, A. B. (2014). Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the ‘‘derecho’’ of June 29–30, 2012. Natural Hazards, 74, 75–107. doi: 10.1007/s11069-014-1310-5.CrossRefGoogle Scholar
  46. Shevchenko, G., Ivelskaya, T., Loskutov, A., & Shishkin, A. (2013). The 2009 Samoan and 2010 Chilean tsunamis recorded on the Pacific coast of Russia. Pure and Applied Geophysics, 170(9–10), 1511–1527. doi: 10.1007/s00024-012-0562-9.CrossRefGoogle Scholar
  47. Stephenson, F. E., & Rabinovich, A. B. (2009). Tsunamis on the Pacific coast of Canada recorded in 1994–2007. Pure and Applied Geophysics, 166(1/2), 177–210. doi: 10.1007/s00024-008-0440-7.CrossRefGoogle Scholar
  48. Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., et al. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117, C08008. doi: 10.1029/2011JC007635.CrossRefGoogle Scholar
  49. Tang, L., Titov, V. V., Moore, C., & Wei, Y. (2016). Real-time assessment of the 16 September 2015 Chile tsunami and implications for near-field forecast. Pure and Applied Geophysics, 173, 369–387. doi: 10.1007/s00024-015-1226-3.CrossRefGoogle Scholar
  50. Thomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd ed., p. 716). New York: Elsevier.Google Scholar
  51. Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2007). Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophysical Research Letters, 34, L15607. doi: 10.1029/2007GL030685.
  52. Thomson, R. E., Fine, I. V., Rabinovich, A. B., Mihaly, S. F., Davis, E. E., Heesemann, M., & Krassovski, M. V. (2011). Observations of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami model. Geophysical Research Letters, 38, L11701. doi: 10.1029/2011GL046728.CrossRefGoogle Scholar
  53. Titov, V. V. (2009). Tsunami forecasting. In A. Robinson & E. Bernard (Eds.), The Sea, vol. 15, Tsunamis (pp. 371–400). Cambridge, USA: Harvard University Press.Google Scholar
  54. Titov, V., Song, T., Tang, L., Bernard, E. N., Bar-Severt, Y., & Wei, Y. (2016). Consistent estimates of tsunami energy show promise for improved early warning. Pure and Applied Geophysics,. doi: 10.1007/s00024-016-1312-1.CrossRefGoogle Scholar
  55. Tong, X., et al. (2010). The 2010 Maule, Chile earthquake: Down dip rupture limit revealed by space geodesy. Geophysical Research Letters, 37, L24311. doi: 10.1029/2010GL045805.CrossRefGoogle Scholar
  56. Vich, M., & Monserrat, S. (2009). The source spectrum for the Algerian tsunami of 21 May 2003 estimated from coastal tide gauge data. Geophysical Research Letters, 36, L20610. doi: 10.1029/2009GL039970.
  57. Watada, S., Ksumoto, S., & Satake, K. (2014). Travel time delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119, 4287–4310. doi: 10.1002/2013JB010841.CrossRefGoogle Scholar
  58. Wilson, R. I., Dengler, L. A., Legg, M. R., Long, K., & Miller, K. M. (2010). The 2010 Chilean tsunami on the California coastline. Seismological Research Letters, 81(3), 545–546.Google Scholar
  59. Wilson, R. I., Admire, A. R., Borrero, J. C., Dengler, L. A., Legg, M. R., Lynett, P., et al. (2013). Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure and Applied Geophysics, 170, 1127–1147. doi: 10.1007/s00024-012-0527-z.CrossRefGoogle Scholar
  60. Ye, L., Lay, T., Kanamori, H., & Koper, K. D. (2016). Rapidly estimated seismic source parameter for the 16 September 2015 Illapel, Chile Mw 8.3 earthquake. Pure and Applied Geophysics, 173(2), 321–332. doi: 10.1007/s00024-015-1202-y.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Oleg Zaytsev
    • 1
  • Alexander B. Rabinovich
    • 2
    • 3
  • Richard E. Thomson
    • 2
  1. 1.Instituto Politécnico NacionalCentro Interdisciplinario de Ciencias MarinasLa PazMexico
  2. 2.Department of Fisheries and OceansInstitute of Ocean SciencesSidneyCanada
  3. 3.Russian Academy of SciencesP.P. Shirshov Institute of OceanologyMoscowRussia

Personalised recommendations