Advertisement

Adjoint Methods for Guiding Adaptive Mesh Refinement in Tsunami Modeling

  • B. N. Davis
  • R. J. LeVeque
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

One difficulty in developing numerical methods for tsunami modeling is the fact that solutions contain time-varying regions where much higher resolution is required than elsewhere in the domain, particularly when tracking a tsunami propagating across the ocean. The open source GeoClaw software deals with this issue by using block-structured adaptive mesh refinement to selectively refine around propagating waves. For problems where only a target area of the total solution is of interest (e.g., one coastal community), a method that allows identifying and refining the grid only in regions that influence this target area would significantly reduce the computational cost of finding a solution. In this work, we show that solving the time-dependent adjoint equation and using a suitable inner product with the forward solution allows more precise refinement of the relevant waves. We present the adjoint methodology first in one space dimension for illustration and in a broad context since it could also be used in other adaptive software, and potentially for other tsunami applications beyond adaptive refinement. We then show how this adjoint method has been integrated into the adaptive mesh refinement strategy of the open source GeoClaw software and present tsunami modeling results showing that the accuracy of the solution is maintained and the computational time required is significantly reduced through the integration of the adjoint method into adaptive mesh refinement.

Keywords

Adjoint problem hyperbolic equations adaptive mesh refinement Clawpack GeoClaw finite volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akcelik, V., Biros, G., & Ghattas, O. (2002). Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation. In: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, SC ’02 (pp. 1–15).Google Scholar
  2. Amante, C., & Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center. USA: NOAA. doi: 10.7289/V5C8276M.
  3. Asner, L., Tavener, S., & Kay, D. (2012). Adjoint-based a posteriori error estimation for coupled time-dependent systems. SIAM Journal on Scientific Computing, 34, A2394–A2419.CrossRefGoogle Scholar
  4. Becker, R., & Rannacher, R. (2001). An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, 10, 1–102.CrossRefGoogle Scholar
  5. Berger, M., & Rigoutsos, I. (1991). An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5), 1278–1286.CrossRefGoogle Scholar
  6. Berger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. (2011). The geoclaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources, 24, 1195–1206.CrossRefGoogle Scholar
  7. Blaise, S., St-Cyr, A., Mavriplis, D., & Lockwood, B. (2013). Discontinuous Galerkin unsteady discrete adjoint method for real-time efficient tsunami simulations. J Comput Phys, 232, 416–430.CrossRefGoogle Scholar
  8. Borrero, J. C., LeVeque R. J., Greer, D., O’Neill, S., & Davis, B. N. (2015). Observations and modelling of tsunami currents at the Port of Tauranga, New Zealand. In: Australasian Coasts & Ports Conference, Engineers Australia and IPENZ (pp. 90–95).Google Scholar
  9. Buffoni, G., & Cupini, E. (2001). The adjoint advection-diffusion equation in stationary and time dependent problems: a reciprocity relation. Rivista di Matematica della Universita di Parma, 4, 9–19.Google Scholar
  10. Bunge, H. P., Hagelberg, C. R., & Travis, B. J. (2003). Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International, 152, 280–301.CrossRefGoogle Scholar
  11. Clawpack Development Team. (2015). Clawpack software. http://www.clawpack.org (version 5.3).
  12. Davis, B. N. (2015). Adjoint code repository. https://github.com/BrisaDavis/adjoint.
  13. Flynt, B. T., & Mavriplis, D. J. (2012). Discrete adjoint based adaptive error control in unsteady flow problems. AIAA Paper 2012-0078.Google Scholar
  14. GeoClaw Development Team. (2016). GeoClaw software. http://www.clawpack.org/geoclaw.
  15. George, D. L. (2008). Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. Journal of Computational Physics, 227, 3089–3113.CrossRefGoogle Scholar
  16. Giles, M. B., & Pierce, N. A. (2000). An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65(3–4), 393–415.CrossRefGoogle Scholar
  17. Giles, M. B., & Suli, E. (2002). Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality. Acta Numerica, 11, 145–236.CrossRefGoogle Scholar
  18. González, F. I., LeVeque, R. J., Adams, L. M., Goldfinger, C., Priest, G. R., & Wang, K. (2014). Probabilistic Tsunami Hazard Assessment (PTHA) for Crescent City, CA. https://digital.lib.washington.edu/researchworks/handle/1773/25916.
  19. Grothe, P., Taylor, L., Eakins, B., Carignan, K., Caldwell, R., Lim, E., & Friday, D. (2011). Digital Elevation Models of Crescent City, California: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-51. Boulder, CO: US Dept. of Commerce. http://www.ngdc.noaa.gov/dem/squareCellGrid/download/693.
  20. Hall, M. C. G. (1986). Application of adjoint sensitivity theory to an atmospheric general circulation model. Journal of the Atmospheric Sciences, 43, 2644–2652.CrossRefGoogle Scholar
  21. Jameson, A. (1988). Aerodynamic design via control theory. Journal of Scientific Computing, 3(3), 233–260.CrossRefGoogle Scholar
  22. Kast, S. M., & Fidkowski, K. J. (2013). Output-based mesh adaptation for high order navier-stokes simulations on deformable domains. Journal of Computational Physics, 252, 468–494.CrossRefGoogle Scholar
  23. Kennedy, G. J., & Martins, J. R. R. A. (2013). An adjoint-based derivative evaluation method for time-dependent aeroelastic optimization of flexible aircraft. In: Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (p. 1530). Boston, MA.Google Scholar
  24. LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press.Google Scholar
  25. LeVeque, R. J., George, D. L., & Berger, M. J. (2011). Tsunami modeling with adaptively refined finite volume methods. Acta Numerica, 20, 211–289.CrossRefGoogle Scholar
  26. Luo, Y., & Fidkowski, K. J. (2011). Output-based space-time mesh adaptation for unsteady aerodynamics. AIAA Paper 2011-491.Google Scholar
  27. Mani, K., & Mavriplis, D. J. (2007). Discrete adjoint based time-step adaptation and error reduction in unsteady flow problems. AIAA Paper 2007-3944.Google Scholar
  28. Marburger, J. (2012). Adjoint-based optimal control of time-dependent free boundary problems. arXiv:1212.3789.
  29. Mishra, A., Mani, K., Mavriplis, D., & Sitaraman, J. (2013). Time-dependent adjoint-based optimization for coupled aeroelastic problems. In: 31st AIAA Applied Aerodynamic Conference (p. 2906). AIAA: San Diego, CA.Google Scholar
  30. Othmer, C. (2014). Adjoint methods for car aerodynamics. Journal of Mathematics in Industry, 4(1), 6.CrossRefGoogle Scholar
  31. Park, M. A. (2004). Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA Journal, 42, 1854–1862.CrossRefGoogle Scholar
  32. Pierce, N. A., & Giles, M. B. (2000). Adjoint recovery of superconvergent functionals from pde approximations. SIAM Review, 42, 247–264.CrossRefGoogle Scholar
  33. Pires, C., & Miranda, P. M. A. (2001) Tsunami waveform inversion by adjoint methods. Journal of Geophysical Research: Oceans, 106(C9):19773–19796.CrossRefGoogle Scholar
  34. Pires, C., & Miranda, P. M. A. (2003) Sensitivity of the adjoint method in the inversion of tsunami source parameters. Natural Hazards and Earth System Science, 3(5):341–351.CrossRefGoogle Scholar
  35. Sanders, B. F., & Katopodes, N. D. (2000). Adjoint sensitivity analysis for shallow-water wave control. Journal of Engineering Mechanics, 126(9), 909919.CrossRefGoogle Scholar
  36. Tang, L., Chamberlin, C., Tolkova, E., Spillane, M., Titov, V. V., Bernard, E. N., & Mofjeld, H. O. (2006). Assessment of porential tsunami impact for Pearl Harbor. Hawaii: NOAA Technical Memorandum OAR PMEL-131.Google Scholar
  37. Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160, 195–216.CrossRefGoogle Scholar
  38. Venditti, D. A., & Darmofal, D. L. (2000). Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional flow. Journal of Computational Physics, 164, 204–227.CrossRefGoogle Scholar
  39. Venditti, D. A., & Darmofal, D. L. (2002). Grid adaptation for functional outputs: application to two-dimensional inviscid flows. Journal of Computational Physics, 176, 40–69.CrossRefGoogle Scholar
  40. Venditti, D. A., & Darmofal, D. L. (2003). Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. Journal of Computational Physics, 187, 22–46.CrossRefGoogle Scholar
  41. Wang, Q., Moin, P., & Iaccarino, G. (2009). Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM Journal on Scientific Computing, 31(4), 2549–2567.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations