Advertisement

Construct, Merge, Solve and Adapt Versus Large Neighborhood Search for Solving the Multi-dimensional Knapsack Problem: Which One Works Better When?

  • Evelia Lizárraga
  • María J. Blesa
  • Christian Blum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10197)

Abstract

Both, Construct, Merge, Solve and Adapt (CMSA) and Large Neighborhood Search (LNS), are hybrid algorithms that are based on iteratively solving sub-instances of the original problem instances, if possible, to optimality. This is done by reducing the search space of the tackled problem instance in algorithm-specific ways which differ from one technique to the other. In this paper we provide first experimental evidence for the intuition that, conditioned by the way in which the search space is reduced, LNS should generally work better than CMSA in the context of problems in which solutions are rather large, and the opposite is the case for problems in which solutions are rather small. The size of a solution is hereby measured by the number of components of which the solution is composed, in comparison to the total number of solution components. Experiments are conducted in the context of the multi-dimensional knapsack problem.

References

  1. 1.
    Talbi, E. (ed.): Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 434. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  2. 2.
    Blum, C., Raidl, G.R.: Hybrid Metaheuristics - Powerful Tools for Optimization. Springer, Heidelberg (2016)Google Scholar
  3. 3.
    Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.: Matheuristics: optimization, simulation and control. In: Blesa, M.J., Blum, C., Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 171–177. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04918-7_13 CrossRefGoogle Scholar
  4. 4.
    Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 399–419. Springer, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Caserta, M., Voß, S.: A corridor method based hybrid algorithm for redundancy allocation. J. Heuristics 22(4), 405–429 (2016)CrossRefGoogle Scholar
  6. 6.
    Lalla-Ruiz, E., Voß, S.: POPMUSIC as a matheuristic for the berth allocation problem. Ann. Math. Artif. Intell. 76(1–2), 173–189 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1), 23–47 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve & adapt: a new general algorithm for combinatorial optimization. Comput. Oper. Res. 68, 75–88 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Discret. Appl. Math. 49(1), 189–212 (1994)Google Scholar
  11. 11.
    Leung, S., Zhang, D., Zhou, C., Wu, T.: A hybrid simulated annealing metaheuristic algorithm for the two-dimensional knapsack problem. Comput. Oper. Res. 39(1), 64–73 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kong, X., Gao, L., Ouyang, H., Li, S.: Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm. Comput. Oper. Res. 63, 7–22 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hanafi, S., Freville, A.: An efficient tabu search approach for the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 106(2–3), 659–675 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: application to the repetition-free longest common subsequence problem. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 46–57. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30698-8_4 CrossRefGoogle Scholar
  16. 16.
    Lizárraga, E., Blesa, M.J., Blum, C., Raidl, G.R.: Large neighborhood search for the most strings with few bad columns problem. Soft Comput. (2016, in press)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Evelia Lizárraga
    • 1
  • María J. Blesa
    • 1
  • Christian Blum
    • 2
  1. 1.Computer Science DeptartmentUniversitat Politècnica de Catalunya – BarcelonaTechBarcelonaSpain
  2. 2.Artificial Intelligence Research Institute (IIIA-CSIC)BellaterraSpain

Personalised recommendations