Guided Wave Interaction in Photonic Integrated Circuits — A Hybrid Analytical/Numerical Approach to Coupled Mode Theory

Part of the Springer Series in Optical Sciences book series (SSOS, volume 204)


Frequently, optical integrated circuits combine elements (waveguide channels, cavities), the simulation of which is well established through mature numerical eigenproblem solvers. It remains to predict the interaction of these modes. We address this task by a general, “Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element numerics, the properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, leading to quantitative, computationally cheap, and easily interpretable models.



Financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft DFG, projects HA 7314/1-1 and TRR 142) is gratefully acknowledged.


  1. 1.
    C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991)Google Scholar
  2. 2.
    S.L. Chuang, J. Lightwave Technol. 5(1), 5 (1987)Google Scholar
  3. 3.
    W.P. Huang, J. Opt. Soc. Am. A 11(3), 963 (1994)Google Scholar
  4. 4.
    D.G. Hall, B.J. Thompson (eds.), Selected Papers on Coupled-Mode Theory in Guided-Wave Optics, SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, 1993)Google Scholar
  5. 5.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)Google Scholar
  6. 6.
    R. März, Integrated Optics – Design and Modeling (Artech House, Boston, 1994)Google Scholar
  7. 7.
    K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, San Diego, 2000)Google Scholar
  8. 8.
    D.R. Rowland, J.D. Love, I.E.E. Proc. Pt. J. 140(3), 177 (1993)Google Scholar
  9. 9.
    K.R. Hiremath, M. Hammer, in Photonic Microresonator Research and Applications, vol. 156, Springer Series in Optical Sciences, ed. by I. Chremmos, N. Uzunoglu, O. Schwelb (Springer, London, 2010), pp. 29–59Google Scholar
  10. 10.
    B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, J.P. Laine, J. Lightwave Technol. 15(6), 998 (1997)Google Scholar
  11. 11.
    C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, IEEE J. Quantum Electron. 35(9), 1322 (1999)Google Scholar
  12. 12.
    M.J. Khan, C. Manolatou, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, IEEE J. Quantum Electron. 35(10), 1451 (1999)Google Scholar
  13. 13.
    S. Fan, P.R. Villeneuve, J.D. Joannopoulos, M.J. Khan, C. Manolatou, H.A. Haus, Phys. Rev. B 59(24), 15882 (1999)Google Scholar
  14. 14.
    Q. Li, T. Wang, Y. Su, M. Yan, M. Qiu, Opt. Express 18(8), 8367 (2010)Google Scholar
  15. 15.
    M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, P. Hertel, Opt. Quantum Electron. 31, 877 (1999)Google Scholar
  16. 16.
    M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, P. Hertel, Opt. Commun. 158, 189 (1998)Google Scholar
  17. 17.
    M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, P. Hertel, J. Lightwave Technol. 17(12), 2605 (1999)Google Scholar
  18. 18.
    P.E. Barclay, K. Srinivasan, O. Painter, J. Opt. Soc. Am. B 20(11), 2274 (2003)Google Scholar
  19. 19.
    P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter, Opt. Lett. 29(7), 697 (2004)Google Scholar
  20. 20.
    R. Stoffer, K.R. Hiremath, M. Hammer, L. Prkna, J. Čtyroký, Opt. Commun. 256(1–3), 46 (2005)Google Scholar
  21. 21.
    C. Vassallo, Opt. Quantum Electron. 29, 95 (1997)Google Scholar
  22. 22.
    P. Bienstmann, S. Selleri, L. Rosa, H.P. Uranus, W.C.L. Hopman, R. Costa, A. Melloni, L.C. Andreani, J.P. Hugonin, P. Lalanne, D. Pinto, S.S.A. Obayya, M. Dems, K. Panajotov, Opt. Quantum Electron. 38(9–11), 731 (2006)Google Scholar
  23. 23.
    PhoeniX Software, Enschede, The Netherlands,
  24. 24.
    JCMwave GmbH, Berlin, Germany,
  25. 25.
    Lumerical Solutions, Inc., Vancouver, Canada,
  26. 26.
    Photon Design, Oxford, United Kingdom,
  27. 27.
    M. Hammer, J. Lightwave Technol. 25(9), 2287 (2007)Google Scholar
  28. 28.
    M. Hammer, Opt. Quantum Electron. 40(11–12), 821 (2009)Google Scholar
  29. 29.
    M. Hammer, J. Opt. Soc. Am. B 27(11), 2237 (2010)Google Scholar
  30. 30.
    E. Franchimon, K. Hiremath, R. Stoffer, M. Hammer, J. Opt. Soc. Am. B 30(4), 1048 (2013)Google Scholar
  31. 31.
    K.R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Čtyroký, Opt. Quantum Electron. 37(1–3), 37 (2005)Google Scholar
  32. 32.
    L. Prkna, J. Čtyroký, M. Hubálek, Opt. Quantum Electron. 36(1/3), 259 (2004)Google Scholar
  33. 33.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)Google Scholar
  34. 34.
    M.A. Popović, C. Manolatou, M.R. Watts, Opt. Express 14(3), 1208 (2006)Google Scholar
  35. 35.
    M. Maksimovic, M. Hammer, E. van Groesen, Opt. Commun. 281(6), 1401 (2008)Google Scholar
  36. 36.
    M. Maksimovic, M. Hammer, E. van Groesen, Opt. Eng. 47(11), 114601 1 (2008)Google Scholar
  37. 37.
    M. Maksimovic, Optical resonances in multilayer structures (University of Twente, Enschede, The Netherlands, 2008). Ph.D. thesisGoogle Scholar
  38. 38.
    M. Hammer, METRIC — mode expansion tools for 2D rectangular integrated optical circuits,
  39. 39.
    K.R. Hiremath, CIRCURS — circular resonator simulator,
  40. 40.
    M. Hammer, Opt. Commun. 235(4–6), 285 (2004)Google Scholar
  41. 41.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1992)Google Scholar
  42. 42.
    M. Hammer, OMS — 1-D mode solver for dielectric multilayer slab waveguides,
  43. 43.
    M. Lohmeyer, R. Stoffer, Opt. Quantum Electron. 33(4/5), 413 (2001)Google Scholar
  44. 44.
    F. Michelotti, A. Driessen, M. Bertolotti (eds.), Microresonators as building blocks for VLSI photonics, in AIP Conference Proceedings, vol. 709 (American Institute of Physics, Melville, 2004)Google Scholar
  45. 45.
    I. Chremmos, N. Uzunoglu, O. Schwelb (eds.), in Photonic microresonator research and applications. Springer Series in Optical Sciences, Vol. 156 (Springer, London, 2010)Google Scholar
  46. 45.
    K.R. Hiremath, R. Stoffer, M. Hammer, Opt. Commun. 257(2), 277 (2006)Google Scholar
  47. 46.
    J.K.S. Poon, J. Scheuer, A. Yariv, IEEE Photonics Technol. Lett. 16(5), 1331 (2004)Google Scholar
  48. 47.
    O. Schwelb, I. Chremmos, in Photonic Microresonator Research and Applications, ed. by I. Chremmos, N. Uzunoglu, O. Schwelb, Springer Series, in Optical Sciences, Vol. 156, (Springer, London, 2010), pp. 139–163Google Scholar
  49. 48.
    S.V. Boriskina, Opt. Lett. 31(3), 338 (2006)Google Scholar
  50. 49.
    S.I. Schmid, K. Xia, J. Evers, Phys. Rev. A 84, 013808 (2011)Google Scholar
  51. 50.
    C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, C. Etrich, F. Lederer, E.B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 85, 033827 (2012)Google Scholar
  52. 51.
    C. Schmidt, A. Chipouline, T. Käsebier, E.B. Kley, A. Tünnermann, T. Pertsch, Phys. Rev. A 80, 043841 (2009)Google Scholar
  53. 52.
    B. Gallinet, O.J.F. Martin, Phys. Rev. B 83(23), 235427 (2011)Google Scholar
  54. 53.
    M.S. Stern, I.E.E. Proc. Pt. J. 135(1), 56 (1988)Google Scholar
  55. 54.
    M.S. Stern, I.E.E. Proc. Pt. J. 135(5), 333 (1988)Google Scholar
  56. 55.
    B. Kettner, Detection of spurious modes in resonance mode computations — pole condition method (Freie Universität zu Berlin, Berlin, 2012). DissertationGoogle Scholar
  57. 56.
    L. Zschiedrich, Transparent boundary conditions for Maxwells equations: numerical concepts beyond the PML method (Freie Universität zu Berlin, Berlin, 2009). DissertationGoogle Scholar
  58. 57.
    E.W.C. van Groesen, J. Molenaar, Continuum Modeling in the Physical Sciences (SIAM Publishers, Philadelphia, 2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Theoretical Electrical EngineeringUniversity of PaderbornPaderbornGermany

Personalised recommendations