Mitochondria Damage and Kidney Disease

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 982)


The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body’s metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.


Oxidative stress Mitochondrial biogenesis Mitochondria bioenergetics Mitochondrial dynamics Mitophagy Acute kidney injury Chronic kidney disease Tissue injury and repair Mitochondria-targeted therapeutics 



Acute kidney injury


AMP-activated protein kinase


Adenosine triphosphate


Calcium ion


Chronic kidney disease


Coenzyme Q


Cyclosporin A

cyt C

Cytochrome C


Diabetic nephropathy


Deoxynucleotides triphosphates


Dynamin related protein 1


End-stage renal disease


Electron transport chain


Focal and segmental glomerulosclerosis




Glycogen synthase kinase



I/R injury or IRI

Ischemic reperfusion injury


Inner mitochondrial membrane


Krüppel-like factor 6


Myopathy encephalopathy lactic acidosis and stroke-like episodes

Mfn1 and 2

Mitofusins 1 and 2


Mitochondrial permeability transition


Mitochondrial permeability transition pore


Mitochondrial DNA


Mitochonic acid 5


Nicotinamide adenine dinucleotide


Nuclear DNA


Nuclear respiratory factors


Outer mitochondrial membrane


Optical atrophy 1


Oxidative phosphorylation


PPARγ-coactivator -1α


Peroxisome proliferator-activated receptor


Reactive oxygen species




Toll-like receptor


Mitochondrial inner membrane potential



PHL is supported, in part, by an OSU intramural Lockwood Fund.

Conflict of Interest

No competing interest.


  1. 1.
    Skorecki K, Chertow GM, Marsden PA, Taal MW, Yu ASL. Brenner and Rector’s the kidney. 10th ed. Philadelphia: Saunders; 2015. 2748 pGoogle Scholar
  2. 2.
    Scott RP, Quaggin SE. Review series: the cell biology of renal filtration. J Cell Biol. 2015;209(2):199–210. Epub 2015/04/29PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382(9887):170–9. Epub 2013/06/04PubMedCrossRefGoogle Scholar
  4. 4.
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765. Epub 2016/07/08PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Duann P, Lianos EA, Ma J, Lin PH. Autophagy, innate immunity and tissue repair in acute kidney injury. Int J Mol Sci. 2016;17(5):E662, p1–19. Epub 2016/05/07CrossRefGoogle Scholar
  6. 6.
    Weisbord SD, Palevsky PM. Design of clinical trials in acute kidney injury: lessons from the past and future directions. Semin Nephrol. 2016;36(1):42–52. Epub 2016/04/18PubMedCrossRefGoogle Scholar
  7. 7.
    Ferenbach DA, Bonventre JV. Acute kidney injury and chronic kidney disease: from the laboratory to the clinic. Nephrol Ther. 2016;12(Suppl 1):S41–8. Epub 2016/03/15PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 2015;11(5):264–76. Epub 2015/02/04PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12(5):267–80.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Divers J, Freedman BI. Genetics in kidney disease in 2013: susceptibility genes for renal and urological disorders. Nat Rev Nephrol. 2014;10(2):69–70. Epub 2013/12/04PubMedCrossRefGoogle Scholar
  11. 11.
    Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25:119. Epub 2016/02/26PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163. Epub 2007/01/24PubMedCrossRefGoogle Scholar
  13. 13.
    Hoenig MP, Zeidel ML. Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol. 2014;9(7):1272–81. Epub 2014/05/03PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Forbes JM. Mitochondria-power players in kidney function? Trends Endocrinol Metab. 2016;27(7):441–2. Epub 2016/05/25PubMedCrossRefGoogle Scholar
  15. 15.
    Hall AM, Unwin RJ, Parker N, Duchen MR. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol. 2009;20(6):1293–302. Epub 2009/05/28PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Muller-Deile J, Schiffer M. The podocyte power-plant disaster and its contribution to glomerulopathy. Front Endocrinol (Lausanne). 2014;5:209. Epub 2015/01/08Google Scholar
  17. 17.
    Stieger N, Worthmann K, Teng B, Engeli S, Das AM, Haller H, et al. Impact of high glucose and transforming growth factor-beta on bioenergetic profiles in podocytes. Metabolism. 2012;61(8):1073–86. Epub 2012/03/01PubMedCrossRefGoogle Scholar
  18. 18.
    Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol. 2011;22(3):431–6. Epub 2011/03/01PubMedCrossRefGoogle Scholar
  19. 19.
    Funk JA, Schnellmann RG. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1alpha activation following ischemia-reperfusion injury. Toxicol Appl Pharmacol. 2013;273(2):345–54. Epub 2013/10/08PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Stallons LJ, Funk JA, Schnellmann RG. Mitochondrial homeostasis in acute organ failure. Curr Pathobiol Rep. 2013;1(3):169–77. Epub 2014/01/05CrossRefGoogle Scholar
  21. 21.
    Quiros PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 2016;17(4):213–26. Epub 2016/03/10PubMedCrossRefGoogle Scholar
  22. 22.
    Tran M, Parikh SM. Mitochondrial biogenesis in the acutely injured kidney. Nephron Clin Pract. 2014;127(1–4):42–5. Epub 2014/10/25PubMedCrossRefGoogle Scholar
  23. 23.
    Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, et al. PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest. 2011;121(10):4003–14. Epub 2011/09/02PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, et al. PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528–32. Epub 2016/03/17PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88(Pt B):179–88. Epub 2015/05/16PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zoja C, Benigni A, Remuzzi G. The Nrf2 pathway in the progression of renal disease. Nephrol Dial Transplant. 2014;29(Suppl 1):i19–24. Epub 2013/06/14PubMedCrossRefGoogle Scholar
  27. 27.
    Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015;350(6265):1208–13. Epub 2016/01/20PubMedCrossRefGoogle Scholar
  28. 28.
    Canto C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53. Epub 2015/06/30PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Saha SP, Whayne Jr TF. Coenzyme Q-10 in human health: supporting evidence? South Med J. 2016;109(1):17–21. Epub 2016/01/08PubMedCrossRefGoogle Scholar
  30. 30.
    Ascenzi P, Coletta M, Wilson MT, Fiorucci L, Marino M, Polticelli F, et al. Cardiolipin-cytochrome c complex: switching cytochrome c from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein. IUBMB Life. 2015;67(2):98–109. Epub 2015/04/11PubMedCrossRefGoogle Scholar
  31. 31.
    O’Brien ES, Nucci NV, Fuglestad B, Tommos C, Wand AJ. Defining the apoptotic trigger: the interaction of cytochrome c and cardiolipin. J Biol Chem. 2015;290(52):30879–87. Epub 2015/10/22PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69. Epub 2012/06/26PubMedCrossRefGoogle Scholar
  33. 33.
    Antonenkov VD, Isomursu A, Mennerich D, Vapola MH, Weiher H, Kietzmann T, et al. The human mitochondrial DNA depletion syndrome gene MPV17 encodes a non-selective channel that modulates membrane potential. J Biol Chem. 2015;290(22):13840–61. Epub 2015/04/12PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dalla Rosa I, Camara Y, Durigon R, Moss CF, Vidoni S, Akman G, et al. MPV17 loss causes deoxynucleotide insufficiency and slow DNA replication in mitochondria. PLoS Genet. 2016;12(1):e1005779. Epub 2016/01/14PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Krick S, Shi S, Ju W, Faul C, Tsai SY, Mundel P, et al. Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease. Proc Natl Acad Sci U S A. 2008;105(37):14106–11. Epub 2008/09/06PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Phys Renal Phys. 2014;306(4):F367–78. Epub 2013/12/07Google Scholar
  37. 37.
    Putti R, Sica R, Migliaccio V, Lionetti L. Diet impact on mitochondrial bioenergetics and dynamics. Front Physiol. 2015;6:109. Epub 2015/04/24PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17(4):491–506. Epub 2013/04/09PubMedCrossRefGoogle Scholar
  39. 39.
    Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–31. Epub 2015/12/17PubMedCrossRefGoogle Scholar
  40. 40.
    McDonnell E, Peterson BS, Bomze HM, Hirschey MD. SIRT3 regulates progression and development of diseases of aging. Trends Endocrinol Metab. 2015;26(9):486–92. Epub 2015/07/04PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Benigni A, Perico L, Macconi D. Mitochondrial dynamics is linked to longevity and protects from end-organ injury: the emerging role of sirtuin 3. Antioxid Redox Signal. 2016;25(4):185–99. Epub 2016/03/15PubMedCrossRefGoogle Scholar
  42. 42.
    Zhan M, Brooks C, Liu F, Sun L, Dong Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 2013;83(4):568–81. Epub 2013/01/18PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014;34(5):807–19. Epub 2013/12/18PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Morigi M, Perico L, Rota C, Longaretti L, Conti S, Rottoli D, et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest. 2015;125(2):715–26. Epub 2015/01/22PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171(8):1917–42. Epub 2014/04/12PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE, et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol. 2015;26(5):1040–52. Epub 2014/11/20PubMedCrossRefGoogle Scholar
  47. 47.
    Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385(9987):2616–43. Epub 2015/03/18PubMedCrossRefGoogle Scholar
  48. 48.
    Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66. Epub 2012/05/24PubMedCrossRefGoogle Scholar
  49. 49.
    Eirin A, Lerman A, Lerman LO. The Emerging role of mitochondrial targeting in kidney disease. Handbook experimental pharmacology. Berlin/Heidelberg: Springer; 2016. p. 1–22. Copyright Holder Springer International Publishing Switzerland. Epub 2016/06/19Google Scholar
  50. 50.
    Tang C, Dong Z. Mitochondria in kidney injury: when the power plant fails. J Am Soc Nephrol. 2016;27(7):1869–72. Epub 2016/01/09PubMedCrossRefGoogle Scholar
  51. 51.
    Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H. Role of mitochondrial DNA in septic AKI via toll-like receptor 9. J Am Soc Nephrol. 2016;27(7):2009–20. Epub 2015/11/18PubMedCrossRefGoogle Scholar
  52. 52.
    Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med. 2016;67:293–307. Epub 2016/01/16PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kers J, Leemans JC, Linkermann A. An overview of pathways of regulated necrosis in acute kidney injury. Semin Nephrol. 2016;36(3):139–52. Epub 2016/06/25PubMedCrossRefGoogle Scholar
  54. 54.
    Perazella MA, Luciano RL. Review of select causes of drug-induced AKI. Expert Rev Clin Pharmacol. 2015;8(4):367–71. Epub 2015/06/26PubMedCrossRefGoogle Scholar
  55. 55.
    Pendergraft 3rd WF, Herlitz LC, Thornley-Brown D, Rosner M, Niles JL. Nephrotoxic effects of common and emerging drugs of abuse. Clin J Am Soc Nephrol. 2014;9(11):1996–2005. Epub 2014/07/19PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ferguson MA, Vaidya VS, Bonventre JV. Biomarkers of nephrotoxic acute kidney injury. Toxicology. 2008;245(3):182–93. Epub 2008/02/26PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mukhopadhyay P, Horvath B, Zsengeller Z, Zielonka J, Tanchian G, Holovac E, et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med. 2012;52(2):497–506. Epub 2011/11/29PubMedCrossRefGoogle Scholar
  58. 58.
    Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Invest. 2009;119(5):1275–85. Epub 2009/04/08PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem. 2010;285(17):13045–56. Epub 2010/02/09PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. Epub 2014/08/29PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8. Epub 2005/08/18PubMedCrossRefGoogle Scholar
  62. 62.
    Parikh SM, Yang Y, He L, Tang C, Zhan M, Dong Z. Mitochondrial function and disturbances in the septic kidney. Semin Nephrol. 2015;35(1):108–19. Epub 2015/03/22PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187(5):509–17. Epub 2013/01/26PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72. Epub 2013/06/04PubMedCrossRefGoogle Scholar
  65. 65.
    SYSTEM USRD. USRDS annual data report: epidemiology of kidney disease in the United States. Bethesda: USRDS- United States Renal Data System; 2015.Google Scholar
  66. 66.
    KDIGO 2012, CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;2012 Suppl:1–150.Google Scholar
  67. 67.
    D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–71. Epub 2016/06/07PubMedCrossRefGoogle Scholar
  68. 68.
    Badal SS, Danesh FR. New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis. 2014;63(2 Suppl 2):S63–83. Epub 2014/01/28PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88. Epub 2013/01/11PubMedCrossRefGoogle Scholar
  70. 70.
    Blake R, Trounce IA. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta. 2014;1840(4):1404–12. Epub 2013/11/20PubMedCrossRefGoogle Scholar
  71. 71.
    Sharma K. Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int Suppl (2011). 2014;4(1):113–7. Epub 2014/11/18CrossRefGoogle Scholar
  72. 72.
    Sharma K. Obesity and diabetic kidney disease: role of oxidant stress and redox balance. Antioxid Redox Signal. 2016;25(4):208–16. Epub 2016/03/18PubMedCrossRefGoogle Scholar
  73. 73.
    Hallan S, Sharma K. The role of mitochondria in diabetic kidney disease. Curr Diabetes Rep. 2016;16(7):61. Epub 2016/05/10CrossRefGoogle Scholar
  74. 74.
    Lash LH. Mitochondrial glutathione in diabetic nephropathy. J Clin Med. 2015;4(7):1428–47. Epub 2015/08/05PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A. 2009;106(34):14385–90. Epub 2009/08/27PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Savu O, Sunkari VG, Botusan IR, Grunler J, Nikoshkov A, Catrina SB. Stability of mitochondrial DNA against reactive oxygen species (ROS) generated in diabetes. Diabetes Metab Res Rev. 2011;27(5):470–9. Epub 2011/04/13PubMedCrossRefGoogle Scholar
  77. 77.
    Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–33. Epub 2005/12/29PubMedCrossRefGoogle Scholar
  78. 78.
    Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186–200. Epub 2012/02/14PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Guo K, Lu J, Huang Y, Wu M, Zhang L, Yu H, et al. Protective role of PGC-1alpha in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One. 2015;10(4):e0125176. Epub 2015/04/09PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mallipattu SK, He JC. KLF 6: a mitochondrial regulator in the kidney. Oncotarget. 2015;6(18):15720–1. Epub 2015/07/15PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mallipattu SK, He JC. The podocyte as a direct target for treatment of glomerular disease? Am J Phys Renal Phys. 2016;311(1):F46–51. Epub 2016/04/22Google Scholar
  82. 82.
    Mallipattu SK, Horne SJ, D'Agati V, Narla G, Liu R, Frohman MA, et al. Kruppel-like factor 6 regulates mitochondrial function in the kidney. J Clin Invest. 2015;125(3):1347–61. Epub 2015/02/18PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kopp JB. Loss of Kruppel-like factor 6 cripples podocyte mitochondrial function. J Clin Invest. 2015;125(3):968–71. Epub 2015/02/18PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zwacka RM, Reuter A, Pfaff E, Moll J, Gorgas K, Karasawa M, et al. The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species. EMBO J. 1994;13(21):5129–34. Epub 1994/11/01PubMedPubMedCentralGoogle Scholar
  85. 85.
    Casalena G, Krick S, Daehn I, Yu L, Ju W, Shi S, et al. Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro. Am J Phys Renal Phys. 2014;306(11):F1372–80. Epub 2014/03/07Google Scholar
  86. 86.
    O’Toole JF. Renal manifestations of genetic mitochondrial disease. Int J Nephrol Renov Dis. 2014;7:57–67. Epub 2014/02/12CrossRefGoogle Scholar
  87. 87.
    Guery B, Choukroun G, Noel LH, Clavel P, Rotig A, Lebon S, et al. The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. J Am Soc Nephrol. 2003;14(8):2099–108. Epub 2003/07/23PubMedCrossRefGoogle Scholar
  88. 88.
    Tzen CY, Tsai JD, Wu TY, Chen BF, Chen ML, Lin SP, et al. Tubulointerstitial nephritis associated with a novel mitochondrial point mutation. Kidney Int. 2001;59(3):846–54. Epub 2001/03/07PubMedCrossRefGoogle Scholar
  89. 89.
    Carney EF. Tubular disease: mistargeted protein disrupts mitochondrial metabolism in inherited Fanconi syndrome. Nat Rev Nephrol. 2014;10(3):125. Epub 2014/01/22PubMedCrossRefGoogle Scholar
  90. 90.
    Goto Y, Itami N, Kajii N, Tochimaru H, Endo M, Horai S. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns-Sayre syndrome. J Pediatr. 1990;116(6):904–10. Epub 1990/06/01PubMedCrossRefGoogle Scholar
  91. 91.
    Peng M, Falk MJ, Haase VH, King R, Polyak E, Selak M, et al. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 2008;4(4):e1000061. Epub 2008/04/26PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17(4):1135–42. Epub 2006/02/24PubMedCrossRefGoogle Scholar
  93. 93.
    Kooman JP, Kotanko P, Schols AM, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. Nat Rev Nephrol. 2014;10(12):732–42. Epub 2014/10/08PubMedCrossRefGoogle Scholar
  94. 94.
    Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2010;23(Suppl 15):S29–36. Epub 2010/11/27PubMedGoogle Scholar
  95. 95.
    Fougeray S, Pallet N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol. 2015;11(1):34–45. Epub 2014/11/12PubMedCrossRefGoogle Scholar
  96. 96.
    Schmitt R, Susnik N, Melk A. Molecular aspects of renal senescence. Curr Opin Organ Transplant. 2015;20(4):412–6. Epub 2015/07/01PubMedCrossRefGoogle Scholar
  97. 97.
    Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A. 2011;108(36):14849–54. Epub 2011/08/20PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tabara LC, Poveda J, Martin-Cleary C, Selgas R, Ortiz A, Sanchez-Nino MD. Mitochondria-targeted therapies for acute kidney injury. Expert Rev Mol Med. 2014;16:e13. Epub 2014/08/12PubMedCrossRefGoogle Scholar
  99. 99.
    Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond). 2015;12:49. Epub 2015/11/28CrossRefGoogle Scholar
  100. 100.
    Kezic A, Spasojevic I, Lezaic V, Bajcetic M. Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxidative Med Cell Longev. 2016;2016:2950503. Epub 2016/06/18CrossRefGoogle Scholar
  101. 101.
    Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant. 2016;31(7):1062–9. Epub 2015/09/04PubMedCrossRefGoogle Scholar
  102. 102.
    Wang H, Guan Y, Karamercan MA, Ye L, Bhatti T, Becker LB, et al. Resveratrol rescues kidney mitochondrial function following hemorrhagic shock. Shock. 2015;44(2):173–80. Epub 2015/04/22PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chen L, Yang S, Zumbrun EE, Guan H, Nagarkatti PS, Nagarkatti M. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res. 2015;59(5):853–64. Epub 2015/02/04PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lempiainen J, Finckenberg P, Levijoki J, Mervaala E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br J Pharmacol. 2012;166(6):1905–15. Epub 2012/02/14PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Jesinkey SR, Funk JA, Stallons LJ, Wills LP, Megyesi JK, Beeson CC, et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J Am Soc Nephrol. 2014;25(6):1157–62. Epub 2014/02/11PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Suzuki T, Yamaguchi H, Kikusato M, Matsuhashi T, Matsuo A, Sato T, et al. Mitochonic Acid 5 (MA-5), a derivative of the plant hormone Indole-3-acetic acid, improves survival of fibroblasts from patients with mitochondrial diseases. Tohoku J Exp Med. 2015;236(3):225–32. Epub 2015/06/30PubMedCrossRefGoogle Scholar
  107. 107.
    Suzuki T, Yamaguchi H, Kikusato M, Hashizume O, Nagatoishi S, Matsuo A, et al. Mitochonic acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage. J Am Soc Nephrol. 2016;27(7):1925–32. Epub 2015/11/27PubMedCrossRefGoogle Scholar
  108. 108.
    Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171(8):2029–50. Epub 2013/10/15PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther. 2014;96(6):672–83. Epub 2014/09/05PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24(8):1250–61. Epub 2013/07/03PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Eirin A, Ebrahimi B, Zhang X, Zhu XY, Woollard JR, He Q, et al. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc Res. 2014;103(4):461–72. Epub 2014/06/21PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang Z, Ge Y, Bao H, Dworkin L, Peng A, Gong R. Redox-sensitive glycogen synthase kinase 3beta-directed control of mitochondrial permeability transition: rheostatic regulation of acute kidney injury. Free Radic Biol Med. 2013;65:849–58. Epub 2013/08/27PubMedCrossRefGoogle Scholar
  113. 113.
    Guan N, Ren YL, Liu XY, Zhang Y, Pei P, Zhu SN, et al. Protective role of cyclosporine A and minocycline on mitochondrial disequilibrium-related podocyte injury and proteinuria occurrence induced by adriamycin. Nephrol Dial Transplant. 2015;30(6):957–69. Epub 2015/02/04PubMedCrossRefGoogle Scholar
  114. 114.
    Wang Z, Bao H, Ge Y, Zhuang S, Peng A, Gong R. Pharmacological targeting of GSK3beta confers protection against podocytopathy and proteinuria by desensitizing mitochondrial permeability transition. Br J Pharmacol. 2015;172(3):895–909. Epub 2014/09/30PubMedCrossRefGoogle Scholar
  115. 115.
    Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204. Epub 2008/02/13PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rosdah AA, Holien JK, Delbridge LM, Dusting GJ, Lim SY. Mitochondrial fission – a drug target for cytoprotection or cytodestruction? Pharmacol Res Perspect. 2016;4(3):e00235. Epub 2016/07/20PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tang WX, Wu WH, Qiu HY, Bo H, Huang SM. Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. J Nephrol. 2013;26(6):1073–82. Epub 2013/04/05PubMedCrossRefGoogle Scholar
  118. 118.
    Sumida M, Doi K, Ogasawara E, Yamashita T, Hamasaki Y, Kariya T, et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015;26(10):2378–87. Epub 2015/02/04PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Papp Z, Edes I, Fruhwald S, De Hert SG, Salmenpera M, Leppikangas H, et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol. 2012;159(2):82–7. Epub 2011/07/26PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of SurgeryBaylor College of MedicineHoustonUSA
  2. 2.Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA
  3. 3.Department of SurgeryThe Ohio State UniversityColumbusUSA

Personalised recommendations